木瓜蛋白酶
化学
抗氧化剂
氧自由基吸收能力
DPPH
水解物
生物化学
阿布茨
蛋白水解酶
食品科学
菠萝蛋白酶
酶
蛋白质水解
色谱法
水解
作者
María López‐Pedrouso,Paula Borrajo,Mirian Pateiro,José M. Lorenzo,José M. Lorenzo
标识
DOI:10.1016/j.foodres.2020.109389
摘要
Antioxidant peptides are increasingly being recognized as food additives due to their effects on body human, regulating in vivo oxidative stress against oxidation of lipids and proteins. Meat by-products are rich sources of protein that can be employed for this purpose. Specifically, porcine liver can be used to prepare hydrolysates with antioxidant activity employing proteolytic enzymes such as alcalase, bromelain, papain and flavourzyme. In this study, the antioxidant activity of these four porcine liver hydrolysates was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ((2,2-azinobis-(3-ethyl-benzothiazoline-6-sulphonate) (ABTS), Ferric reducing antioxidant power assay (FRAP) and Oxygen radical absorbance capacity assay (ORAC) assays and the identification of bioactive peptides was carried out by SWATH-MS technology. According to the SDS-PAGE pattern, the proteolysis index and the free amino acids amount, the protein degradation was clearly different among the studied enzymes. Indeed, alcalase enzyme produced the release of small peptides, meanwhile flavourzyme produced higher level of free amino acids. The heatmap analysis showed a peptidomic pattern more differentiated for alcalase than for the other enzymes. The peptides most abundant and correlated with antioxidant capacity were APAAIGPYSQAVLVDR from uncharacterized protein, GLNQALVDLHALGSAR, ALFQDVQKPSQDEWGK and LSGPQAGLGEYLFER from ferritin and LGEHNIDVLEGNEQFINAAK from trypsinogen. The production and characterization of biopeptides is a new merging challenge of meat industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI