注释
工作流程
计算机科学
特征(语言学)
可视化
天然产物
生物信息学
代谢组学
计算生物学
人工智能
化学
数据挖掘
生物
生物信息学
数据库
基因
生物化学
哲学
语言学
出处
期刊:Methods in molecular biology
日期:2020-01-01
卷期号:: 227-243
被引量:29
标识
DOI:10.1007/978-1-0716-0239-3_13
摘要
The Global Natural Product Social Molecular Networking (GNPS) platform leverages tandem mass spectrometry (MS/MS) data for annotation of compounds. Molecular networks aid in the visualization of the chemical space within a metabolomics experiment. Recently, molecular networking has been combined with feature detection methods to yield Feature-Based Molecular Networking (FBMN). FBMN allows for the discrimination of isomers within the molecular network, incorporation of quantitative information generated by the feature detection tools into visualization of the molecular network, and compatibility with forthcoming in silico annotation tools. This chapter provides step-by-step methods for generating a molecular network to annotate microbial natural products using the Global Natural Product Social Molecular Networking (GNPS) Feature-Based Molecular Networking (FBMN) workflow.
科研通智能强力驱动
Strongly Powered by AbleSci AI