医学
前列腺癌
四分位间距
前列腺切除术
队列
癌症
阶段(地层学)
癌症登记处
雄激素剥夺疗法
肿瘤科
放射治疗
内科学
监测、流行病学和最终结果
妇科
生物
古生物学
作者
Robert T. Dess,Krithika Suresh,Michael J. Zeléfsky,Stephen J. Freedland,Brandon A. Mahal,Matthew R. Cooperberg,Brian J. Davis,Eric M. Horwitz,Martha K. Terris,Christopher L. Amling,William J. Aronson,Christopher J. Kane,Will Jackson,Jason W.D. Hearn,Curtiland Deville,Theodore L. DeWeese,Stephen Greco,Todd McNutt,Daniel Y. Song,Yilun Sun,Rohit Mehra,Samuel D. Kaffenberger,Todd M. Morgan,Paul L. Nguyen,Felix Y. Feng,Vidit Sharma,Phuoc T. Tran,Bradley J. Stish,Thomas M. Pisansky,Nicholas G. Zaorsky,Fábio Ynoe de Moraes,Alejandro Berlín,Antonio Finelli,Nicola Fossati,Giorgio Gandaglia,Alberto Briganti,Peter R. Carroll,R. Jeffrey Karnes,Michael W. Kattan,Matthew J. Schipper,Daniel E. Spratt
出处
期刊:JAMA Oncology
[American Medical Association]
日期:2020-10-22
卷期号:6 (12): 1912-1912
被引量:61
标识
DOI:10.1001/jamaoncol.2020.4922
摘要
Importance
In 2016, the American Joint Committee on Cancer (AJCC) established criteria to evaluate prediction models for staging. No localized prostate cancer models were endorsed by the Precision Medicine Core committee, and 8th edition staging was based on expert consensus. Objective
To develop and validate a pretreatment clinical prognostic stage group system for nonmetastatic prostate cancer. Design, Setting, and Participants
This multinational cohort study included 7 centers from the United States, Canada, and Europe, the Shared Equal Access Regional Cancer Hospital (SEARCH) Veterans Affairs Medical Centers collaborative (5 centers), and the Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE) registry (43 centers) (the STAR-CAP cohort). Patients with cT1-4N0-1M0 prostate adenocarcinoma treated from January 1, 1992, to December 31, 2013 (follow-up completed December 31, 2017). The STAR-CAP cohort was randomly divided into training and validation data sets; statisticians were blinded to the validation data until the model was locked. A Surveillance, Epidemiology, and End Results (SEER) cohort was used as a second validation set. Analysis was performed from January 1, 2018, to November 30, 2019. Exposures
Curative intent radical prostatectomy (RP) or radiotherapy with or without androgen deprivation therapy. Main Outcomes and Measures
Prostate cancer–specific mortality (PCSM). Based on a competing-risk regression model, a points-based Score staging system was developed. Model discrimination (C index), calibration, and overall performance were assessed in the validation cohorts. Results
Of 19 684 patients included in the analysis (median age, 64.0 [interquartile range (IQR), 59.0-70.0] years), 12 421 were treated with RP and 7263 with radiotherapy. Median follow-up was 71.8 (IQR, 34.3-124.3) months; 4078 (20.7%) were followed up for at least 10 years. Age, T category, N category, Gleason grade, pretreatment serum prostate-specific antigen level, and the percentage of positive core biopsy results among biopsies performed were included as variables. In the validation set, predicted 10-year PCSM for the 9 Score groups ranged from 0.3% to 40.0%. The 10-year C index (0.796; 95% CI, 0.760-0.828) exceeded that of the AJCC 8th edition (0.757; 95% CI, 0.719-0.792), which was improved across age, race, and treatment modality and within the SEER validation cohort. The Score system performed similarly to individualized random survival forest and interaction models and outperformed National Comprehensive Cancer Network (NCCN) and Cancer of the Prostate Risk Assessment (CAPRA) risk grouping 3- and 4-tier classification systems (10-year C index for NCCN 3-tier, 0.729; for NCCN 4-tier, 0.746; for Score, 0.794) as well as CAPRA (10-year C index for CAPRA, 0.760; for Score, 0.782). Conclusions and Relevance
Using a large, diverse international cohort treated with standard curative treatment options, a proposed AJCC-compliant clinical prognostic stage group system for prostate cancer has been developed. This system may allow consistency of reporting and interpretation of results and clinical trial design.