Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node

医学 淋巴结 队列 淋巴 结直肠癌 肿瘤科 接收机工作特性 内科学 转移 放射科 癌症 病理
作者
Shin‐ei Kudo,Katsuro Ichimasa,Benjamin Villard,Yuichi Mori,Masashi Misawa,Shôichi Saito,Kinichi Hotta,Yutaka Saito,Takahisa Matsuda,Kazutaka Yamada,Toshifumi Mitani,Kazuo Ohtsuka,Akiko Chino,Daisuke Ide,Kenichiro Imai,Yoshihiro Kishida,Keiko Nakamura,Yasumitsu Saiki,Masafumi Tanaka,Shu Hoteya
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:160 (4): 1075-1084.e2 被引量:158
标识
DOI:10.1053/j.gastro.2020.09.027
摘要

In accordance with guidelines, most patients with T1 colorectal cancers (CRC) undergo surgical resection with lymph node dissection, despite the low incidence (∼10%) of metastasis to lymph nodes. To reduce unnecessary surgical resections, we used artificial intelligence to build a model to identify T1 colorectal tumors at risk for metastasis to lymph node and validated the model in a separate set of patients.We collected data from 3134 patients with T1 CRC treated at 6 hospitals in Japan from April 1997 through September 2017 (training cohort). We developed a machine-learning artificial neural network (ANN) using data on patients' age and sex, as well as tumor size, location, morphology, lymphatic and vascular invasion, and histologic grade. We then conducted the external validation on the ANN model using independent 939 patients at another hospital during the same period (validation cohort). We calculated areas under the receiver operator characteristics curves (AUCs) for the ability of the model and US guidelines to identify patients with lymph node metastases.Lymph node metastases were found in 319 (10.2%) of 3134 patients in the training cohort and 79 (8.4%) of /939 patients in the validation cohort. In the validation cohort, the ANN model identified patients with lymph node metastases with an AUC of 0.83, whereas the guidelines identified patients with lymph node metastases with an AUC of 0.73 (P < .001). When the analysis was limited to patients with initial endoscopic resection (n = 517), the ANN model identified patients with lymph node metastases with an AUC of 0.84 and the guidelines identified these patients with an AUC of 0.77 (P = .005).The ANN model outperformed guidelines in identifying patients with T1 CRCs who had lymph node metastases. This model might be used to determine which patients require additional surgery after endoscopic resection of T1 CRCs. UMIN Clinical Trials Registry no: UMIN000038609.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陶帅帅完成签到,获得积分10
6秒前
小代完成签到,获得积分10
8秒前
丘比特应助绯丶采纳,获得10
8秒前
毛益聪完成签到,获得积分10
9秒前
恢复出厂设置完成签到,获得积分10
9秒前
12秒前
12秒前
利物浦2024完成签到,获得积分10
15秒前
ztl发布了新的文献求助10
19秒前
田様应助QDU采纳,获得10
19秒前
充电宝应助csj采纳,获得10
20秒前
利物浦996完成签到,获得积分10
22秒前
24秒前
29秒前
30秒前
畅快海云完成签到 ,获得积分10
33秒前
笨笨芯发布了新的文献求助30
35秒前
Yxy2021发布了新的文献求助10
36秒前
wys完成签到,获得积分10
37秒前
CodeCraft应助Ztx采纳,获得10
38秒前
39秒前
shaw完成签到,获得积分10
40秒前
40秒前
Lucas应助jjjdcjcj采纳,获得10
40秒前
领导范儿应助当代鲁迅采纳,获得10
40秒前
42秒前
Wang完成签到,获得积分10
42秒前
孙燕应助H28G采纳,获得10
43秒前
QYPANG发布了新的文献求助10
43秒前
wuy发布了新的文献求助10
46秒前
46秒前
Xin发布了新的文献求助10
47秒前
磊磊完成签到,获得积分10
47秒前
脑洞疼应助風声鶴唳采纳,获得10
49秒前
小布丁完成签到 ,获得积分10
51秒前
重重重飞完成签到 ,获得积分10
52秒前
jjjdcjcj发布了新的文献求助10
52秒前
54秒前
wuy完成签到,获得积分10
55秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652