Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node

医学 淋巴结 队列 淋巴 结直肠癌 肿瘤科 接收机工作特性 内科学 转移 放射科 癌症 病理
作者
Shin‐ei Kudo,Katsuro Ichimasa,Benjamin Villard,Yuichi Mori,Masashi Misawa,Shôichi Saito,Kinichi Hotta,Yutaka Saito,Takahisa Matsuda,Kazutaka Yamada,Toshifumi Mitani,Kazuo Ohtsuka,Akiko Chino,Daisuke Ide,Kenichiro Imai,Yoshihiro Kishida,Keiko Nakamura,Yasumitsu Saiki,Masafumi Tanaka,Shu Hoteya
出处
期刊:Gastroenterology [Elsevier]
卷期号:160 (4): 1075-1084.e2 被引量:173
标识
DOI:10.1053/j.gastro.2020.09.027
摘要

In accordance with guidelines, most patients with T1 colorectal cancers (CRC) undergo surgical resection with lymph node dissection, despite the low incidence (∼10%) of metastasis to lymph nodes. To reduce unnecessary surgical resections, we used artificial intelligence to build a model to identify T1 colorectal tumors at risk for metastasis to lymph node and validated the model in a separate set of patients.We collected data from 3134 patients with T1 CRC treated at 6 hospitals in Japan from April 1997 through September 2017 (training cohort). We developed a machine-learning artificial neural network (ANN) using data on patients' age and sex, as well as tumor size, location, morphology, lymphatic and vascular invasion, and histologic grade. We then conducted the external validation on the ANN model using independent 939 patients at another hospital during the same period (validation cohort). We calculated areas under the receiver operator characteristics curves (AUCs) for the ability of the model and US guidelines to identify patients with lymph node metastases.Lymph node metastases were found in 319 (10.2%) of 3134 patients in the training cohort and 79 (8.4%) of /939 patients in the validation cohort. In the validation cohort, the ANN model identified patients with lymph node metastases with an AUC of 0.83, whereas the guidelines identified patients with lymph node metastases with an AUC of 0.73 (P < .001). When the analysis was limited to patients with initial endoscopic resection (n = 517), the ANN model identified patients with lymph node metastases with an AUC of 0.84 and the guidelines identified these patients with an AUC of 0.77 (P = .005).The ANN model outperformed guidelines in identifying patients with T1 CRCs who had lymph node metastases. This model might be used to determine which patients require additional surgery after endoscopic resection of T1 CRCs. UMIN Clinical Trials Registry no: UMIN000038609.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如果天气好的话完成签到,获得积分10
刚刚
研究牲发布了新的文献求助10
刚刚
刚刚
Curry完成签到 ,获得积分10
刚刚
8R60d8应助拾肆采纳,获得10
1秒前
1秒前
2秒前
3秒前
马少洋发布了新的文献求助10
3秒前
3秒前
3秒前
Cwin完成签到 ,获得积分10
4秒前
凡千灵溪发布了新的文献求助10
4秒前
4秒前
老鼠咕噜发布了新的文献求助10
5秒前
utopia完成签到 ,获得积分10
5秒前
5秒前
思源应助晨阳采纳,获得10
6秒前
6秒前
7秒前
WWW发布了新的文献求助10
7秒前
8秒前
年轻人发布了新的文献求助60
8秒前
老李完成签到,获得积分10
9秒前
9秒前
沈智瀚发布了新的文献求助10
9秒前
11秒前
13秒前
老迟到的天曼完成签到,获得积分20
13秒前
Yang完成签到,获得积分10
16秒前
wyt完成签到,获得积分10
16秒前
晨阳发布了新的文献求助10
17秒前
海贵完成签到,获得积分10
18秒前
19秒前
20秒前
ST完成签到 ,获得积分10
20秒前
所所应助研究牲采纳,获得10
21秒前
阔达凝天完成签到,获得积分10
23秒前
ZHONGJIAHAO完成签到,获得积分20
23秒前
赵润泽完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296018
求助须知:如何正确求助?哪些是违规求助? 4445360
关于积分的说明 13836028
捐赠科研通 4330050
什么是DOI,文献DOI怎么找? 2376864
邀请新用户注册赠送积分活动 1372213
关于科研通互助平台的介绍 1337586