已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Machine Learning to Predict Rehabilitation Outcomes in Postacute Hip Fracture Patients

逻辑回归 接收机工作特性 阿达布思 老年康复 机器学习 康复 髋部骨折 人工智能 物理疗法 支持向量机 计算机科学 物理医学与康复 医学 内分泌学 骨质疏松症
作者
Guy Shtar,Lior Rokach,Bracha Shapira,Ran Nissan,Avital Hershkovitz
出处
期刊:Archives of Physical Medicine and Rehabilitation [Elsevier]
卷期号:102 (3): 386-394 被引量:26
标识
DOI:10.1016/j.apmr.2020.08.011
摘要

Objective To use machine learning-based methods in designing a predictive model of rehabilitation outcomes for postacute hip fracture patients. Design A retrospective analysis using linear models, AdaBoost, CatBoost, ExtraTrees, K-Nearest Neighbors, RandomForest, Support vector machine, XGBoost, and voting of all models to develop and validate a predictive model. Setting A university-affiliated 300-bed major postacute geriatric rehabilitation center. Participants Consecutive hip fracture patients (N=1625) admitted to an postacute rehabilitation department. Main Outcome Measures The FIM instrument, motor FIM (mFIM), and the relative functional gain on mFIM (mFIM effectiveness) as a continuous and binary variable. Ten predictive models were created: base models (linear/logistic regression), and 8 machine learning models (AdaBoost, CatBoost, ExtraTrees, K-Nearest Neighbors, RandomForest, Support vector machine, XGBoost, and a voting ensemble). R2 was used to evaluate their performance in predicting a continuous outcome variable, and the area under the receiver operating characteristic curve was used to evaluate the binary outcome. A paired 2-tailed t test compared the results of the different models. Results Machine learning-based models yielded better results than the linear and logistic regression models in predicting rehabilitation outcomes. The 3 most important predictors of the mFIM effectiveness score were the Mini Mental State Examination (MMSE), prefracture mFIM scores, and age. The 3 most important predictors of the discharge mFIM score were the admission mFIM, MMSE, and prefracture mFIM scores. The most contributing factors for favorable outcomes (mFIM effectiveness > median) with higher prediction confidence level were high MMSE (25.7±2.8), high prefacture mFIM (81.5±7.8), and high admission mFIM (48.6±8) scores. We present a simple prediction instrument for estimating the expected performance of postacute hip fracture patients. Conclusions The use of machine learning models to predict rehabilitation outcomes of postacute hip fracture patients is superior to linear and logistic regression models. The higher the MMSE, prefracture mFIM, and admission mFIM scores are, the higher the confidence levels of the predicted parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe发布了新的文献求助10
1秒前
Doc.Lee完成签到,获得积分10
2秒前
苏苏阿苏完成签到,获得积分10
6秒前
9秒前
zoe完成签到,获得积分10
12秒前
左凝珍发布了新的文献求助10
14秒前
菜鸟一枚完成签到,获得积分10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
18秒前
19秒前
胖胖玩啊玩完成签到 ,获得积分10
20秒前
20秒前
左凝珍完成签到,获得积分10
23秒前
23秒前
ttracc完成签到 ,获得积分10
24秒前
24秒前
sss发布了新的文献求助30
25秒前
科研通AI2S应助干冷安采纳,获得10
25秒前
xx完成签到 ,获得积分10
28秒前
小丘2024发布了新的文献求助10
31秒前
32秒前
HK发布了新的文献求助10
34秒前
快乐抽屉发布了新的文献求助10
35秒前
wab完成签到,获得积分0
36秒前
葡萄霉霉西柚完成签到,获得积分10
39秒前
小遇完成签到 ,获得积分10
42秒前
共享精神应助liweiDr采纳,获得10
42秒前
42秒前
烟花应助努力学习的阿文采纳,获得10
48秒前
Singularity应助儒雅的傲芙采纳,获得10
52秒前
yangting发布了新的文献求助10
52秒前
万能图书馆应助爱吃蛋挞采纳,获得10
56秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139336
求助须知:如何正确求助?哪些是违规求助? 2790244
关于积分的说明 7794607
捐赠科研通 2446679
什么是DOI,文献DOI怎么找? 1301314
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109