Model-based Reinforcement Learning: A Survey

强化学习 计算机科学 钢筋 人工智能 心理学 社会心理学
作者
Thomas M. Moerland,Joost Broekens,Aske Plaat,Catholijn M. Jonker
出处
期刊:Foundations and trends in machine learning [Now Publishers]
卷期号:16 (1): 1-118 被引量:243
标识
DOI:10.1561/2200000086
摘要

Sequential decision making, commonly formalized as Markov Decision Process (MDP) optimization, is an important challenge in artificial intelligence.Two key approaches to this problem are reinforcement learning (RL) and planning.This survey is an integration of both fields, better known as model-based reinforcement learning.Model-based RL has two main steps.First, we systematically cover approaches to dynamics model learning, including challenges like dealing with stochasticity, uncertainty, partial observability, and temporal abstraction.Second, we present a systematic categorization of planning-learning integration, including aspects like: where to start planning, what budgets to allocate to planning and real data collection, how to plan, and how to integrate planning in the learning and acting loop.After these two sections, we also discuss implicit model-based RL as an end-to-end alternative for model learning and planning, and we cover the potential benefits of model-based RL.Along the way, the survey also draws connections to several related RL fields, like hierarchical RL and transfer
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助激情的一斩采纳,获得10
刚刚
天天快乐应助11采纳,获得10
1秒前
36456657应助八九采纳,获得50
1秒前
潦草完成签到,获得积分20
1秒前
华仔应助科研通管家采纳,获得10
1秒前
freesialll完成签到 ,获得积分10
1秒前
深情安青应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得20
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
摇摇晃晃完成签到 ,获得积分10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
贪玩手链应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
李健的小迷弟应助liyi采纳,获得10
3秒前
华仔应助科研通管家采纳,获得20
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得20
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740