Robust Control of Multi Degree of Freedom Robot Based on Disturbance Observer of Neural Network

控制理论(社会学) 人工神经网络 滑模控制 扭矩 控制系统 跟踪误差 角速度 机器人 非线性系统 计算机科学 工程类 人工智能 控制(管理) 物理 电气工程 热力学 量子力学
作者
Na Wang,Jimeng Zhang,Ke Xu,Junzhe Hu
出处
期刊:Journal of Engineering Science and Technology Review [Eastern Macedonia and Thrace Institute of Technology]
卷期号:13 (3): 143-151 被引量:3
标识
DOI:10.25103/jestr.133.16
摘要

A multi degree of freedom (DOF) robot is a complex and variable nonlinear system, and its control performance is affected by the inherent parameters of the model itself, friction, external disturbance, and other factors.A robust control method based on neural network disturbance observer was proposed in this study to improve the effect of time-varying system parameters and external disturbances on the control system performance.A new dynamic model of robot error was constructed by analyzing the characteristics of the robot system model.The total disturbance of the system was observed and compensated online on the basis of the neural network observer, and the effectiveness of the control method was verified through simulation.Results demonstrate that the robust adaptive control method with neural network disturbance observer reduces the maximum angular displacement error by 2.7 times and the maximum angular velocity tracking error by 2.14 times compared with the control method without observer when model parameter perturbation and external disturbance are found in the system.The maximum angular velocity error is 4 and 88.6 times lower than proportional derivative (PD) compensation control and traditional sliding mode control, respectively.The neural network disturbance observer can accurately track the total disturbance of the system.The input torque of the proposed control method has a small peak torque, which is 1/8 and 1/2 times lower than the sliding mode control and PD compensation control, respectively, and the control curve of the proposed control method is relatively smooth.The proposed method provides a reference for the multi DOF robot to achieve high-precision tracking in complex and changeable environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyan发布了新的文献求助10
刚刚
xia发布了新的文献求助10
刚刚
刚刚
2秒前
江蹇完成签到,获得积分10
3秒前
NexusExplorer应助云海老采纳,获得10
4秒前
5秒前
6秒前
6秒前
欧石楠完成签到 ,获得积分10
7秒前
yuyan完成签到,获得积分10
9秒前
Guai完成签到,获得积分10
9秒前
adam发布了新的文献求助10
9秒前
DengLingjie发布了新的文献求助10
10秒前
甜筒发布了新的文献求助10
12秒前
Libra完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
16秒前
谢佩奇发布了新的文献求助10
18秒前
chensongyu完成签到,获得积分10
18秒前
凌儿响叮当完成签到 ,获得积分10
20秒前
斯文败类应助重要谷冬采纳,获得10
20秒前
Akim应助甜筒采纳,获得10
20秒前
feimengxia完成签到 ,获得积分10
21秒前
Akim应助茂飞采纳,获得10
23秒前
23秒前
25秒前
26秒前
充电宝应助xia采纳,获得10
27秒前
谢佩奇完成签到,获得积分10
30秒前
Jackie发布了新的文献求助10
30秒前
研友_LJGXgn完成签到,获得积分10
31秒前
云海老发布了新的文献求助10
33秒前
33秒前
Steve完成签到,获得积分20
35秒前
36秒前
37秒前
40秒前
40秒前
40秒前
李爱国应助动听千风采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019