Fast Blind Image Super Resolution Using Matrix-Variable Optimization

核(代数) 最优化问题 计算机科学 人工智能 正规化(语言学) 算法 数学 计算机视觉 模式识别(心理学) 数学优化 组合数学
作者
Ling Huang,Youshen Xia
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (3): 945-955 被引量:16
标识
DOI:10.1109/tcsvt.2020.2996592
摘要

Super resolution image reconstruction under unknown Gaussian blur has been a challenging topic. Advanced optimization-based works for blind image super-resolution (SR) were reported to be effective, but there exist both large data space storage and time consuming due to vector-variable optimization. This paper proposes a matrix-variable optimization method for fast blind image SR. We first present an accurate blur kernel estimation-based matrix decomposition method. Then we propose minimizing a matrix-variable optimization problem with sparse representation and TV regularization terms. The proposed method can exactly estimate the unknown blur kernel and blur matrix. Compared with vector-variable optimization based methods for blind image SR, the proposed method can greatly reduce their data space storage and computation time. Compared with deep learning methods, the proposed method can directly deal with multiframe SR problem without training and learning task. Experimental results show that the proposed algorithm is superior to conventional optimization-based method in terms of solution quality and computation time. Moreover, the proposed method can obtain higher reconstruction quality than the deep learning methods, specially in the case of large blur kernels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsssr发布了新的文献求助10
2秒前
2秒前
上官若男应助云宝采纳,获得10
2秒前
4秒前
4秒前
penguin发布了新的文献求助10
4秒前
5秒前
5秒前
萤阳完成签到,获得积分10
7秒前
收手吧大哥应助董宏杨采纳,获得10
7秒前
8秒前
9秒前
嘻嘻发布了新的文献求助30
10秒前
安详安寒发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
Jasper应助黄河鲤鱼儿采纳,获得10
12秒前
深情安青应助齐齐巴宾采纳,获得10
13秒前
刘老哥6完成签到,获得积分10
13秒前
moxiaoxi6952发布了新的文献求助10
13秒前
ljydhr发布了新的文献求助10
13秒前
爱听歌的老九完成签到,获得积分10
13秒前
15秒前
木婉清发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
17秒前
18秒前
aaa完成签到,获得积分10
18秒前
8R60d8应助科研通管家采纳,获得80
19秒前
华仔应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
鸣笛应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952331
求助须知:如何正确求助?哪些是违规求助? 3497729
关于积分的说明 11088592
捐赠科研通 3228329
什么是DOI,文献DOI怎么找? 1784774
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303