Electronic Structure, Optical Properties, and Photoelectrochemical Activity of Sn-Doped Fe2O3 Thin Films

兴奋剂 材料科学 带材弯曲 费米能级 极化子 载流子 脉冲激光沉积 光电发射光谱学 带隙 价(化学) 薄膜 光电子学 凝聚态物理 X射线光电子能谱 半导体 纳米技术 化学 核磁共振 物理 量子力学 电子 有机化学
作者
Chengming Tian,Weiwei Li,Y. M. Lin,Zhenzhong Yang,Le Wang,Yingge Du,Haiyan Xiao,Liang Qiao,J. Y. Zhang,Lei Chen,Dongchen Qi,Judith L. MacManus‐Driscoll,Kelvin H. L. Zhang
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (23): 12548-12558 被引量:62
标识
DOI:10.1021/acs.jpcc.0c02875
摘要

Hematite (Fe2O3) is a well-known oxide semiconductor suitable for photoelectrochemical (PEC) water splitting and industry gas sensing. It is widely known that Sn doping of Fe2O3 can enhance the device performance, yet the underlying mechanism remains elusive. In this work, we determine the relationship between electronic structure, optical properties, and PEC activity of Sn-doped Fe2O3 by studying highly crystalline, well-controlled thin films prepared by pulsed laser deposition (PLD). We show that Sn doping substantially increases the n-type conductivity of Fe2O3, and the conduction mechanism is better described by a small-polaron hopping (SPH) model. Only 0.2% Sn doping significantly reduces the activation energy barrier for SPH conduction from at least 0.5 eV for undoped Fe2O3 to 0.14 eV for doped ones. A combination of X-ray photoemission, X-ray absorption spectroscopy, and DFT calculations reveals that the Fermi level gradually shifts toward the conduction band minimum with Sn doping. A localized Fe2+-like gap state is observed at the top of the valence band, accounting for the SPH conduction. Interestingly, different from the literature, only 0.2% Sn doping in Fe2O3 significantly improves the PEC activity, while more Sn decreases it. The improved PEC activity is partially attributed to an increased band bending potential which facilitates the charge separation at the space charge region. The reduced activation energy barrier for SPH will facilitate the transport of photoexcited carriers for the enhanced PEC, which is of interest for further carrier dynamics study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
酷波er应助健忘捕采纳,获得10
2秒前
李健应助irisjlj采纳,获得10
4秒前
001完成签到 ,获得积分20
5秒前
sgjj33完成签到,获得积分10
7秒前
情怀应助凝子老师采纳,获得10
8秒前
迪丽盐巴完成签到,获得积分10
9秒前
13秒前
14秒前
合适的致远完成签到,获得积分10
16秒前
小马甲应助sgjj33采纳,获得10
18秒前
所所应助奋斗灵波采纳,获得10
19秒前
20秒前
慌糖完成签到,获得积分10
21秒前
liu完成签到,获得积分10
23秒前
柔弱凡松发布了新的文献求助10
25秒前
25秒前
27秒前
QQQQ发布了新的文献求助20
27秒前
zy完成签到 ,获得积分10
27秒前
坦率若颜发布了新的文献求助10
31秒前
terence应助YYJ25采纳,获得10
32秒前
34秒前
36秒前
36秒前
JianminLuo完成签到 ,获得积分10
37秒前
慌糖发布了新的文献求助10
37秒前
贪玩语蓉完成签到,获得积分10
38秒前
39秒前
heidi发布了新的文献求助10
40秒前
40秒前
CipherSage应助昵称采纳,获得10
40秒前
所得皆所愿完成签到 ,获得积分10
40秒前
英俊的铭应助浙江嘉兴采纳,获得10
42秒前
caoyy发布了新的文献求助10
43秒前
45秒前
花陵完成签到 ,获得积分10
45秒前
田様应助youjiang采纳,获得10
45秒前
lixm发布了新的文献求助10
46秒前
47秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851