快离子导体
锂(药物)
电化学
材料科学
固溶体
阳极
电导率
阴极
离子电导率
电化学窗口
电解质
金属
锂电池
离子
分析化学(期刊)
化学
无机化学
电极
物理化学
离子键合
冶金
内分泌学
有机化学
医学
色谱法
作者
Qiong Zhou,Biyi Xu,Po‐Hsiu Chien,Yutao Li,Bing Huang,Nan Wu,Henghui Xu,Nicholas S. Grundish,Mingxue Tang,John B. Goodenough
标识
DOI:10.1002/smtd.202000764
摘要
Abstract A thin solid electrolyte with a high Li + conductivity is used to separate the metallic lithium anode and the cathode in an all‐solid‐state Li‐metal battery. However, most solid Li‐ion electrolytes have a small electrochemical stability window, large interfacial resistance, and cannot block lithium‐dendrite growth when lithium is plated on charging of the cell. Mg 2+ stabilizes a rhombohedral NASICON‐structured solid electrolyte of the formula Li 1.2 Mg 0.1 Zr 1.9 (PO 4 ) 3 (LMZP). This solid electrolyte has Li‐ion conductivity two orders of magnitude higher at 25 °C than that of the triclinic LiZr 2 (PO 4 ) 3 . 7 Li and 6 Li NMR confirm the Li‐ions in two different crystallographic sites of the NASICON framework with 85% of the Li‐ions having a relatively higher mobility than the other 15%. The anode–electrolyte interface is further investigated with symmetric Li/LMZP/Li cell testing, while the cathode–electrolyte interface is explored with an all‐solid‐state Li/LMZP/LiFePO 4 cell. The enhanced performance of these cells enabled by the Li 1.2 Mg 0.1 Zr 1.9 (PO 4 ) 3 solid electrolyte is stable upon repeated charge/discharge cycling.
科研通智能强力驱动
Strongly Powered by AbleSci AI