去相关
计算机科学
散斑噪声
噪音(视频)
斑点图案
估计员
相位噪声
全息干涉法
数字全息术
电子散斑干涉技术
全息术
高斯噪声
相(物质)
人工智能
噪声测量
干涉测量
算法
光学
降噪
物理
数学
图像(数学)
统计
量子力学
作者
Pascal Picart,Marie Tahon,Antoine Laurent,Pascal Picart
标识
DOI:10.1364/dh.2020.htu4b.4
摘要
This paper presents a deep-learning-based algorithm dedicated to the processing of the speckle noise in phase measurements in digital holographic interferometry. In order to train the network to de-noise phase fringe patterns, a database is constituted with a set of noise-free and noisy phase data corresponding to realistic decorrelation phase noise conditions. An iterative scheme coupled with an input noise level estimator allows improving the deep learning based approach especially for strong noise. Performance of the trained network is estimated and shows that this approach is close to the state-of-the-art of speckle de-noising in digital holographic phase measurements.
科研通智能强力驱动
Strongly Powered by AbleSci AI