清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning

医学 Sørensen–骰子系数 人工智能 分割 威尔科克森符号秩检验 深度学习 核医学 百分位 放射科 模式识别(心理学) 计算机科学 图像分割 曼惠特尼U检验 统计 数学 内科学
作者
Jason Cai,Zeynettin Akkus,Kenneth A. Philbrick,Arunnit Boonrod,Safa Hoodeshenas,Alexander D. Weston,Pouria Rouzrokh,Gian Marco Conte,Atefeh Zeinoddini,David C. Vogelsang,Qiao Huang,Bradley J. Erickson
出处
期刊:Radiology [Radiological Society of North America]
卷期号:2 (5): e190183-e190183 被引量:21
标识
DOI:10.1148/ryai.2020190183
摘要

To develop a deep learning model that segments intracranial structures on head CT scans.In this retrospective study, a primary dataset containing 62 normal noncontrast head CT scans from 62 patients (mean age, 73 years; age range, 27-95 years) acquired between August and December 2018 was used for model development. Eleven intracranial structures were manually annotated on the axial oblique series. The dataset was split into 40 scans for training, 10 for validation, and 12 for testing. After initial training, eight model configurations were evaluated on the validation dataset and the highest performing model was evaluated on the test dataset. Interobserver variability was reported using multirater consensus labels obtained from the test dataset. To ensure that the model learned generalizable features, it was further evaluated on two secondary datasets containing 12 volumes with idiopathic normal pressure hydrocephalus (iNPH) and 30 normal volumes from a publicly available source. Statistical significance was determined using categorical linear regression with P < .05.Overall Dice coefficient on the primary test dataset was 0.84 ± 0.05 (standard deviation). Performance ranged from 0.96 ± 0.01 (brainstem and cerebrum) to 0.74 ± 0.06 (internal capsule). Dice coefficients were comparable to expert annotations and exceeded those of existing segmentation methods. The model remained robust on external CT scans and scans demonstrating ventricular enlargement. The use of within-network normalization and class weighting facilitated learning of underrepresented classes.Automated segmentation of CT neuroanatomy is feasible with a high degree of accuracy. The model generalized to external CT scans as well as scans demonstrating iNPH.Supplemental material is available for this article.© RSNA, 2020.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Migue应助科研通管家采纳,获得10
31秒前
46秒前
白白发布了新的文献求助10
51秒前
搜集达人应助白白采纳,获得10
1分钟前
中央完成签到,获得积分10
1分钟前
1分钟前
zhangyimg发布了新的文献求助10
1分钟前
隐形曼青应助zhangyimg采纳,获得10
1分钟前
Migue应助科研通管家采纳,获得10
2分钟前
5分钟前
仙道彰-7完成签到 ,获得积分10
6分钟前
烟花应助一吃一大碗采纳,获得10
6分钟前
Migue应助科研通管家采纳,获得10
6分钟前
ding应助一吃一大碗采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
zhangyimg发布了新的文献求助10
7分钟前
香蕉觅云应助zhangyimg采纳,获得10
7分钟前
yaoyaoyao完成签到 ,获得积分10
7分钟前
tingyeh完成签到,获得积分10
9分钟前
10分钟前
Migue应助科研通管家采纳,获得10
10分钟前
11分钟前
zhangyimg发布了新的文献求助10
11分钟前
忘忧Aquarius完成签到,获得积分10
11分钟前
Singularity完成签到,获得积分0
13分钟前
现代青枫完成签到,获得积分10
14分钟前
ybheart完成签到,获得积分10
14分钟前
FashionBoy应助zhangxr采纳,获得10
15分钟前
鲸鱼完成签到 ,获得积分10
16分钟前
Owen应助sidneyyang采纳,获得10
16分钟前
整齐的蜻蜓完成签到 ,获得积分10
17分钟前
gy完成签到,获得积分10
17分钟前
zz完成签到 ,获得积分10
18分钟前
sidneyyang完成签到,获得积分10
18分钟前
大模型应助科研通管家采纳,获得10
18分钟前
Migue应助科研通管家采纳,获得10
18分钟前
18分钟前
zhangxr发布了新的文献求助10
19分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164806
求助须知:如何正确求助?哪些是违规求助? 2815907
关于积分的说明 7910512
捐赠科研通 2475484
什么是DOI,文献DOI怎么找? 1318185
科研通“疑难数据库(出版商)”最低求助积分说明 632028
版权声明 602282