医学
Sørensen–骰子系数
人工智能
分割
威尔科克森符号秩检验
深度学习
核医学
百分位
放射科
模式识别(心理学)
计算机科学
图像分割
曼惠特尼U检验
统计
数学
内科学
作者
Jason Cai,Zeynettin Akkus,Kenneth A. Philbrick,Arunnit Boonrod,Safa Hoodeshenas,Alexander D. Weston,Pouria Rouzrokh,Gian Marco Conte,Atefeh Zeinoddini,David C. Vogelsang,Qiao Huang,Bradley J. Erickson
出处
期刊:Radiology
[Radiological Society of North America]
日期:2020-09-01
卷期号:2 (5): e190183-e190183
被引量:21
标识
DOI:10.1148/ryai.2020190183
摘要
To develop a deep learning model that segments intracranial structures on head CT scans.In this retrospective study, a primary dataset containing 62 normal noncontrast head CT scans from 62 patients (mean age, 73 years; age range, 27-95 years) acquired between August and December 2018 was used for model development. Eleven intracranial structures were manually annotated on the axial oblique series. The dataset was split into 40 scans for training, 10 for validation, and 12 for testing. After initial training, eight model configurations were evaluated on the validation dataset and the highest performing model was evaluated on the test dataset. Interobserver variability was reported using multirater consensus labels obtained from the test dataset. To ensure that the model learned generalizable features, it was further evaluated on two secondary datasets containing 12 volumes with idiopathic normal pressure hydrocephalus (iNPH) and 30 normal volumes from a publicly available source. Statistical significance was determined using categorical linear regression with P < .05.Overall Dice coefficient on the primary test dataset was 0.84 ± 0.05 (standard deviation). Performance ranged from 0.96 ± 0.01 (brainstem and cerebrum) to 0.74 ± 0.06 (internal capsule). Dice coefficients were comparable to expert annotations and exceeded those of existing segmentation methods. The model remained robust on external CT scans and scans demonstrating ventricular enlargement. The use of within-network normalization and class weighting facilitated learning of underrepresented classes.Automated segmentation of CT neuroanatomy is feasible with a high degree of accuracy. The model generalized to external CT scans as well as scans demonstrating iNPH.Supplemental material is available for this article.© RSNA, 2020.
科研通智能强力驱动
Strongly Powered by AbleSci AI