GRP-DNet: A gray recurrence plot-based densely connected convolutional network for classification of epileptiform EEG

计算机科学 脑电图 人工智能 模式识别(心理学) 滑动窗口协议 癫痫 卷积神经网络 窗口(计算) 神经科学 心理学 操作系统
作者
Ming Zeng,Xiaonei Zhang,Chunyu Zhao,Xiangzhe Lu,Qing-Hao Meng
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:347: 108953-108953 被引量:27
标识
DOI:10.1016/j.jneumeth.2020.108953
摘要

The classification of epileptiform electroencephalogram (EEG) signals has been treated as an important but challenging issue for realizing epileptic seizure detection. In this work, combing gray recurrence plot (GRP) and densely connected convolutional network (DenseNet), we developed a novel classification system named GRP-DNet to identify seizures and epilepsy from single-channel, long-term EEG signals. The proposed GRP-DNet classification system includes three main modules: 1) input module takes an input long-term EEG signal and divides it into multiple short segments using a fixed-size non-overlapping sliding window (FNSW); 2) conversion module transforms short segments into GRPs and passes them to the DenseNet; 3) fusion and decision, the predicted label of each GRP is fused using a majority voting strategy to make the final decision. Six different classification experiments were designed based on a publicly available benchmark database to evaluate the effectiveness of our system. Experimental results showed that the proposed GRP-DNet achieved an excellent classification accuracy of 100 % in each classification experiment, Furthermore, GRP-DNet gave excellent computational efficiency, which indicates its tremendous potential for developing an EEG-based online epilepsy diagnosis system. Our GRP-DNet system was superior to the existing competitive classification systems using the same database. The GRP-DNet is a potentially powerful system for identifying and classifying EEG signals recorded from different brain states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Zoe发布了新的文献求助10
刚刚
1秒前
Purple发布了新的文献求助10
1秒前
慕青应助changmengying采纳,获得10
1秒前
潇枭羽发布了新的文献求助10
2秒前
领导范儿应助zp采纳,获得10
2秒前
2秒前
PrayOne完成签到 ,获得积分10
3秒前
潇洒的朋友完成签到 ,获得积分10
3秒前
慕青应助Qinghua采纳,获得10
4秒前
4秒前
7M发布了新的文献求助10
4秒前
华仔应助Desperado采纳,获得10
5秒前
一介书生发布了新的文献求助10
5秒前
5秒前
洁净乐松发布了新的文献求助30
5秒前
lf完成签到,获得积分10
6秒前
文献求助小达人完成签到,获得积分10
7秒前
7秒前
Purple完成签到,获得积分20
8秒前
TresAU发布了新的文献求助10
8秒前
8秒前
fz完成签到,获得积分10
9秒前
9秒前
10秒前
香蕉觅云应助陈塘关守将采纳,获得10
10秒前
11秒前
飞鸿踏雪发布了新的文献求助10
11秒前
主谓宾发布了新的文献求助10
12秒前
bkagyin应助个性的汲采纳,获得10
12秒前
供电给供电的求助进行了留言
12秒前
豆丁完成签到,获得积分10
12秒前
Orange应助simon采纳,获得10
13秒前
13秒前
脑洞疼应助粥粥采纳,获得10
13秒前
爆米花应助阿星采纳,获得30
14秒前
lipeng发布了新的文献求助10
14秒前
噗噗xie发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271