电解质
常量(计算机编程)
锂(药物)
时间常数
电流(流体)
非线性系统
恒流
离子
扩散
化学
材料科学
控制理论(社会学)
应用数学
电极
热力学
物理
计算机科学
数学
电气工程
工程类
内分泌学
物理化学
人工智能
医学
有机化学
量子力学
程序设计语言
控制(管理)
作者
Brandon Guest,M. Scott Trimboli,Gregory L. Plett
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2020-12-01
卷期号:167 (16): 160546-160546
被引量:6
标识
DOI:10.1149/1945-7111/abd44c
摘要
The challenges of parameter identification for a lumped-parameter, physics-based model of a lithium-ion cell motivate a closed-form approximation that can be used inside an optimization routine. Present reduced-order models of the lithium-ion cell do not achieve the desired speed and fidelity for the parameter-identification application when applied to a constant-current test. This paper introduces a novel approximation to the cell internal and terminal-voltage dynamics that is specialized for constant-current applications and incorporates a model of solid and electrolyte diffusion, solid and electrolyte potential, and the kinetics of the solid–electrolyte interphase layer. The approximation leverages non-time-varying profiles for electrolyte-level quantities under a pseudo-steady-state assumption coupled with a nonlinear approximation to the lithium stoichiometry at the electrode surface. The proposed approximation achieves significantly improved speed and accuracy over a comparable reduced-order model simplified for constant current when evaluated against a full-order-model simulation using the true parameter values.
科研通智能强力驱动
Strongly Powered by AbleSci AI