Forecasting daily stock trend using multi-filter feature selection and deep learning

计算机科学 人工智能 特征选择 生成模型 库存(枪支) 股票市场 计量经济学 机器学习 数据挖掘 生成语法 经济 机械工程 生物 工程类 古生物学
作者
Anwar Ul Haq,Adnan Zeb,Zhenfeng Lei,Defu Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:168: 114444-114444 被引量:127
标识
DOI:10.1016/j.eswa.2020.114444
摘要

Abstract Stock market forecasting has attracted significant attention mainly due to the potential monetary benefits. Predicting these markets is a challenging task due to numerous interrelated factors, and needs a complete and efficient feature selection process to identify the most informative factors. As a time series problem, stock price movements are also dependent on movements on its previous trading days. Feature selection techniques have been widely applied in stock forecasting, but existing approaches usually use a single feature selection technique, which may overlook some important assumptions about the underlying regression function linking the input and output variables. In this study, we combine features selected by multiple feature selection techniques to generate an optimal feature subset and then use a deep generative model to predict future price movements. First, we compute an extended set of forty-four technical indicators from daily stock data of eighty-eight stocks and then compute their importance by independently training logistic regression model, support vector machine and random forests. Based on a prespecified threshold, the lowest ranked features are dropped and the rest are grouped into clusters. The variable importance measure is reused to select the most important feature from each cluster to generate the final subset. The input is then fed to a deep generative model comprising of a market signal extractor and an attention mechanism. The market signal extractor recurrently decodes market movement from the latent variables to deal with stochastic nature of the stock data and the attention mechanism discriminates between predictive dependencies of different temporal auxiliary outputs. The results demonstrate that combining features selected by multiple feature selection approaches and using them as input into a deep generative model outperforms state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助章鱼哥采纳,获得10
刚刚
刚刚
1秒前
hongjing完成签到,获得积分10
1秒前
2秒前
刘乐艺发布了新的文献求助30
3秒前
QAQ发布了新的文献求助10
3秒前
神券胀得难受完成签到,获得积分10
3秒前
4秒前
4秒前
莽哥发布了新的文献求助10
5秒前
英吉利25发布了新的文献求助10
6秒前
及禾应助机灵夜云采纳,获得50
6秒前
曌毓发布了新的文献求助10
6秒前
领导范儿应助清晨采纳,获得10
7秒前
科研通AI6应助温暖的雨旋采纳,获得10
7秒前
端庄亦巧完成签到 ,获得积分10
9秒前
科研通AI6应助江小雪采纳,获得10
10秒前
male完成签到,获得积分10
10秒前
秦时明月发布了新的文献求助10
10秒前
10秒前
Orange应助QAQ采纳,获得100
10秒前
13秒前
杨三多完成签到,获得积分10
13秒前
13秒前
平常代真完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
拾寒完成签到,获得积分10
16秒前
大力冰绿应助曌毓采纳,获得20
16秒前
机器猫nzy发布了新的文献求助10
17秒前
感动的又槐完成签到,获得积分10
17秒前
15503116087完成签到,获得积分10
18秒前
小二郎应助李昕123采纳,获得10
19秒前
潘潘完成签到,获得积分10
19秒前
西奥发布了新的文献求助10
19秒前
Zehn发布了新的文献求助10
19秒前
wyf发布了新的文献求助10
20秒前
碎月发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429