Forecasting daily stock trend using multi-filter feature selection and deep learning

计算机科学 人工智能 特征选择 生成模型 库存(枪支) 股票市场 计量经济学 机器学习 数据挖掘 生成语法 经济 机械工程 生物 工程类 古生物学
作者
Anwar Ul Haq,Adnan Zeb,Zhenfeng Lei,Defu Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:168: 114444-114444 被引量:122
标识
DOI:10.1016/j.eswa.2020.114444
摘要

Abstract Stock market forecasting has attracted significant attention mainly due to the potential monetary benefits. Predicting these markets is a challenging task due to numerous interrelated factors, and needs a complete and efficient feature selection process to identify the most informative factors. As a time series problem, stock price movements are also dependent on movements on its previous trading days. Feature selection techniques have been widely applied in stock forecasting, but existing approaches usually use a single feature selection technique, which may overlook some important assumptions about the underlying regression function linking the input and output variables. In this study, we combine features selected by multiple feature selection techniques to generate an optimal feature subset and then use a deep generative model to predict future price movements. First, we compute an extended set of forty-four technical indicators from daily stock data of eighty-eight stocks and then compute their importance by independently training logistic regression model, support vector machine and random forests. Based on a prespecified threshold, the lowest ranked features are dropped and the rest are grouped into clusters. The variable importance measure is reused to select the most important feature from each cluster to generate the final subset. The input is then fed to a deep generative model comprising of a market signal extractor and an attention mechanism. The market signal extractor recurrently decodes market movement from the latent variables to deal with stochastic nature of the stock data and the attention mechanism discriminates between predictive dependencies of different temporal auxiliary outputs. The results demonstrate that combining features selected by multiple feature selection approaches and using them as input into a deep generative model outperforms state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cml完成签到,获得积分10
6秒前
czcz发布了新的文献求助10
7秒前
子不语完成签到,获得积分10
7秒前
Hungrylunch应助shijiu采纳,获得10
8秒前
8秒前
9秒前
9秒前
JamesPei应助研友_ZGAWYL采纳,获得10
10秒前
10秒前
12秒前
Yzy发布了新的文献求助10
13秒前
youayou发布了新的文献求助10
13秒前
用户5063899完成签到,获得积分10
13秒前
小胖发布了新的文献求助10
13秒前
千千发布了新的文献求助10
14秒前
可爱的函函应助高高ai采纳,获得10
14秒前
111发布了新的文献求助10
15秒前
15秒前
香蕉觅云应助冷酷的文博采纳,获得10
16秒前
one发布了新的文献求助10
16秒前
18秒前
小二郎应助aaaa采纳,获得10
18秒前
带象发布了新的文献求助10
20秒前
小二郎应助小黄doge采纳,获得10
21秒前
22秒前
39hpl完成签到,获得积分10
22秒前
JRY发布了新的文献求助10
23秒前
26秒前
bkagyin应助费费采纳,获得10
28秒前
Ava应助冷酷的文博采纳,获得10
28秒前
研友_ZGAWYL发布了新的文献求助10
29秒前
dongdong完成签到,获得积分10
30秒前
32秒前
33秒前
失眠的安白完成签到,获得积分20
33秒前
充电宝应助Alive采纳,获得10
34秒前
35秒前
isa发布了新的文献求助10
36秒前
38秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482810
求助须知:如何正确求助?哪些是违规求助? 3072319
关于积分的说明 9126371
捐赠科研通 2764054
什么是DOI,文献DOI怎么找? 1516797
邀请新用户注册赠送积分活动 701797
科研通“疑难数据库(出版商)”最低求助积分说明 700690