Surface-enhanced shifted excitation Raman difference spectroscopy for trace detection of fentanyl in beverages

表面增强拉曼光谱 拉曼光谱 激发波长 芬太尼 材料科学 光谱学 光学 拉曼散射 蒸馏水 分析化学(期刊) 检出限 波长 色谱法 化学 光电子学 医学 物理 麻醉 量子力学
作者
Jianfeng Ye,Sheng Wang,Yujia Zhang,Boyi Li,Minjian Lu,Xiaohua Qi,Haoyun Wei,Yan Li,Mingqiang Zou
出处
期刊:Applied Optics [The Optical Society]
卷期号:60 (8): 2354-2354 被引量:10
标识
DOI:10.1364/ao.418579
摘要

In recognition of the misuse risks of fentanyl, there is an urgent need to develop a useful and rapid analytical method to detect and monitor the opioid drug. The surface-enhanced shifted excitation Raman difference spectroscopy (SE-SERDS) method has been demonstrated to suppress background interference and enhance Raman signals. In this study, the SE-SERDS method was used for trace detection of fentanyl in beverages. To prepare the simulated illegal drug–beverages, fentanyls were dissolved into distilled water or Mizone as a series of test samples. Based on our previous work, the surface-enhanced Raman spectroscopy detection was performed on the beverages containing fentanyl by the prepared AgNPs and the SE-SERDS spectra of test samples were collected by the dual-wavelength rapid excitation Raman difference spectroscopy system. In addition, the quantitative relationship between fentanyl concentrations and the Raman peaks was constructed by the Langmuir equation. The experimental results show that the limits of quantitation for fentanyl in distilled water and Mizone were 10 ng/mL and 200 ng/mL, respectively; the correlation coefficients for the nonlinear regression were as high as 0.9802 and 0.9794, respectively; and the relative standard deviation was less than 15%. Hence, the SE-SERDS method will be a promising method for the trace analyses of food safety and forensics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的镜子应助dingning采纳,获得20
刚刚
1秒前
完美世界应助迷路以筠采纳,获得10
4秒前
momo完成签到,获得积分10
5秒前
5秒前
lewis发布了新的文献求助10
6秒前
浪迹天涯应助求助采纳,获得10
6秒前
六月发布了新的文献求助10
6秒前
乌梅不乌发布了新的文献求助10
6秒前
八二力完成签到 ,获得积分10
6秒前
6秒前
11秒前
一夜很静应助迷人素采纳,获得10
12秒前
12秒前
耍酷的夏云应助SV采纳,获得10
14秒前
六月完成签到,获得积分10
18秒前
Anquan发布了新的文献求助10
18秒前
善学以致用应助好难啊采纳,获得10
18秒前
悦耳觅荷发布了新的文献求助10
19秒前
19秒前
20秒前
十七完成签到 ,获得积分10
20秒前
20秒前
ccerr完成签到,获得积分10
21秒前
21秒前
乌梅不乌完成签到,获得积分10
21秒前
21秒前
和谐的寄凡完成签到,获得积分10
22秒前
Millennial发布了新的文献求助10
23秒前
诸笑白发布了新的文献求助10
23秒前
车秋寒发布了新的文献求助10
23秒前
24秒前
我是老大应助张学友采纳,获得30
27秒前
xiangxiang发布了新的文献求助10
27秒前
27秒前
想在海边种花完成签到,获得积分10
28秒前
无限的雨梅完成签到 ,获得积分10
28秒前
28秒前
材料打工人完成签到 ,获得积分10
29秒前
甜甜忆山完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851