Pattern recognition in distributed fiber-optic acoustic sensor using an intensity and phase stacked convolutional neural network with data augmentation

计算机科学 卷积神经网络 模式识别(心理学) 分布式声传感 人工智能 特征(语言学) 空间分析 光纤 光纤传感器 遥感 语言学 电信 地质学 哲学
作者
Huan Wu,Bin Zhou,Kun Zhu,Chao Shang,Hwa‐Yaw Tam,Chao Lü
出处
期刊:Optics Express [The Optical Society]
卷期号:29 (3): 3269-3269 被引量:52
标识
DOI:10.1364/oe.416537
摘要

Distributed acoustic sensors (DASs) have the capability of registering faint vibrations with high spatial resolution along the sensing fiber. Advanced algorithms are important for DAS in many applications since they can help extract and classify the unique signatures of different types of vibration events. Deep convolutional neural networks (CNNs), which have powerful spectro-temporal feature learning capability, are well suited for event classification in DAS. Generally, these data-driven methods are highly dependent on the availability of large quantities of training data for learning a mapping from input to output. In this work, to fully utilize the collected information and maximize the power of CNNs, we propose a method to enlarge the useful dataset for CNNs from two aspects. First, we propose an intensity and phase stacked CNN (IP-CNN) to utilize both the intensity and phase information from a DAS with coherent detection. Second, we propose to use data augmentation to further increase the training dataset size. The influence of different data augmentation methods on the performance of the proposed CNN architecture is thoroughly investigated. The experimental results show that the proposed IP-CNN with data augmentation produces a classification accuracy of 88.2% on our DAS dataset with 1km sensing length. This indicates that the usage of both intensity and phase information together with the enlarged training dataset after data augmentation can greatly improve the classification accuracy, which is useful for DAS pattern recognition in real applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
麦子完成签到 ,获得积分10
1秒前
1秒前
gglp完成签到 ,获得积分10
1秒前
Frankyu发布了新的文献求助10
2秒前
vv完成签到,获得积分10
2秒前
脑洞疼应助xiaoxin采纳,获得10
4秒前
Patrickkkk完成签到,获得积分10
5秒前
研究啥完成签到,获得积分10
5秒前
5秒前
5秒前
芒果完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
dddddw完成签到,获得积分10
6秒前
6秒前
科研通AI6应助元子采纳,获得10
6秒前
意寒完成签到,获得积分10
7秒前
7秒前
复杂平凡完成签到,获得积分10
7秒前
chenu完成签到 ,获得积分10
8秒前
细心的初曼完成签到,获得积分10
8秒前
8秒前
小野狼完成签到,获得积分10
8秒前
橘猫这里完成签到,获得积分10
8秒前
wuxiao发布了新的文献求助10
9秒前
splemeth发布了新的文献求助10
9秒前
cccxxx完成签到,获得积分10
10秒前
xiaoxin完成签到,获得积分10
10秒前
冉冉发布了新的文献求助10
10秒前
青山完成签到 ,获得积分10
11秒前
神的女人完成签到,获得积分10
11秒前
11秒前
小包完成签到,获得积分10
11秒前
11秒前
lin完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585147
求助须知:如何正确求助?哪些是违规求助? 4668950
关于积分的说明 14773671
捐赠科研通 4616972
什么是DOI,文献DOI怎么找? 2530364
邀请新用户注册赠送积分活动 1499158
关于科研通互助平台的介绍 1467659