Pattern recognition in distributed fiber-optic acoustic sensor using an intensity and phase stacked convolutional neural network with data augmentation

计算机科学 卷积神经网络 模式识别(心理学) 分布式声传感 人工智能 特征(语言学) 空间分析 光纤 光纤传感器 遥感 语言学 电信 地质学 哲学
作者
Huan Wu,Bin Zhou,Kun Zhu,Chao Shang,Hwa‐Yaw Tam,Chao Lü
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:29 (3): 3269-3269 被引量:52
标识
DOI:10.1364/oe.416537
摘要

Distributed acoustic sensors (DASs) have the capability of registering faint vibrations with high spatial resolution along the sensing fiber. Advanced algorithms are important for DAS in many applications since they can help extract and classify the unique signatures of different types of vibration events. Deep convolutional neural networks (CNNs), which have powerful spectro-temporal feature learning capability, are well suited for event classification in DAS. Generally, these data-driven methods are highly dependent on the availability of large quantities of training data for learning a mapping from input to output. In this work, to fully utilize the collected information and maximize the power of CNNs, we propose a method to enlarge the useful dataset for CNNs from two aspects. First, we propose an intensity and phase stacked CNN (IP-CNN) to utilize both the intensity and phase information from a DAS with coherent detection. Second, we propose to use data augmentation to further increase the training dataset size. The influence of different data augmentation methods on the performance of the proposed CNN architecture is thoroughly investigated. The experimental results show that the proposed IP-CNN with data augmentation produces a classification accuracy of 88.2% on our DAS dataset with 1km sensing length. This indicates that the usage of both intensity and phase information together with the enlarged training dataset after data augmentation can greatly improve the classification accuracy, which is useful for DAS pattern recognition in real applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助pierre_gasly采纳,获得10
1秒前
深情安青应助宁少爷采纳,获得10
1秒前
焦星星发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
cheng完成签到,获得积分10
4秒前
6秒前
LDDD发布了新的文献求助10
7秒前
年轻丸子发布了新的文献求助10
8秒前
badyoungboy发布了新的文献求助10
8秒前
9秒前
feike完成签到,获得积分10
10秒前
12秒前
Hou完成签到 ,获得积分10
12秒前
aman完成签到 ,获得积分10
12秒前
22222发布了新的文献求助10
12秒前
jie酱拌面应助和谐念寒采纳,获得10
13秒前
科研通AI2S应助bruce采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
单身的溪流完成签到 ,获得积分10
16秒前
柠檬关注了科研通微信公众号
17秒前
Lemon发布了新的文献求助30
17秒前
Ava应助ssr采纳,获得10
21秒前
Akim应助1GE采纳,获得30
22秒前
23秒前
24秒前
xql完成签到,获得积分10
25秒前
26秒前
酷炫的黄豆完成签到 ,获得积分10
26秒前
蓝一梁完成签到 ,获得积分10
27秒前
28秒前
28秒前
29秒前
liu1223456完成签到,获得积分10
30秒前
xql发布了新的文献求助10
31秒前
32秒前
35秒前
ltc0728发布了新的文献求助10
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574051
求助须知:如何正确求助?哪些是违规求助? 3994145
关于积分的说明 12364912
捐赠科研通 3667381
什么是DOI,文献DOI怎么找? 2021209
邀请新用户注册赠送积分活动 1055343
科研通“疑难数据库(出版商)”最低求助积分说明 942739