亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for pattern discovery in management research

机器学习 因果关系 相互依存 过程(计算) 灵活性(工程) 人工智能 计算机科学 数据科学 政治学 数学 统计 操作系统 法学
作者
Prithwiraj Choudhury,Ryan Allen,Michael G. Endres
出处
期刊:Strategic Management Journal [Wiley]
卷期号:42 (1): 30-57 被引量:121
标识
DOI:10.1002/smj.3215
摘要

Abstract Research Summary Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post hoc analysis of regression results to detect patterns that may have gone unnoticed. However, ML models should not be treated as the result of a deductive causal test. To demonstrate the application of ML for pattern discovery, we implement ML algorithms to study employee turnover at a large technology company. We interpret the relationships between variables using partial dependence plots, which uncover surprising nonlinear and interdependent patterns between variables that may have gone unnoticed using traditional methods. To guide readers evaluating ML for pattern discovery, we provide guidance for evaluating model performance, highlight human decisions in the process, and warn of common misinterpretation pitfalls. The Supporting Information section provides code and data to implement the algorithms demonstrated in this article. Managerial Summary Supervised machine learning (ML) methods are a powerful toolkit that might help managers and researchers discover interesting patterns in large and complex data. We demonstrate this by using several ML algorithms to investigate the drivers of employee turnover at a large technology company. We evaluate the performance of the models, and use visual tools to interpret the patterns revealed. These patterns can be useful in understanding turnover, but we caution not to confuse correlation with causation. These methods should be viewed as “exploratory” and not conclusive proof of relationships in the data. Our guidance can be helpful for managers evaluating analysis conducted by data scientists in their organizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助云锋采纳,获得10
1秒前
无奈梦寒应助momo采纳,获得30
16秒前
ding应助寒冷梦槐采纳,获得10
20秒前
情怀应助呐呐呐呐呐呐采纳,获得10
32秒前
32秒前
大模型应助科研通管家采纳,获得10
1分钟前
追逐123完成签到 ,获得积分10
1分钟前
1分钟前
勤恳依霜发布了新的文献求助10
1分钟前
赘婿应助momo采纳,获得10
1分钟前
乐乐应助加油加油冲冲冲采纳,获得10
1分钟前
脑洞疼应助Marciu33采纳,获得10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
1分钟前
小芭乐完成签到 ,获得积分10
1分钟前
科研废人发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
云锋发布了新的文献求助10
1分钟前
2分钟前
2分钟前
寒冷梦槐发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
冷傲士萧发布了新的文献求助10
2分钟前
云锋完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
冷傲士萧完成签到,获得积分10
3分钟前
3分钟前
3分钟前
asd1576562308完成签到 ,获得积分10
3分钟前
ling361完成签到,获得积分10
3分钟前
丰富芙完成签到,获得积分10
3分钟前
3分钟前
3分钟前
李爱国应助丰富芙采纳,获得10
4分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3721108
求助须知:如何正确求助?哪些是违规求助? 3267247
关于积分的说明 9947409
捐赠科研通 2980913
什么是DOI,文献DOI怎么找? 1635152
邀请新用户注册赠送积分活动 776312
科研通“疑难数据库(出版商)”最低求助积分说明 746251