Machine learning for pattern discovery in management research

机器学习 因果关系 相互依存 过程(计算) 灵活性(工程) 人工智能 计算机科学 数据科学 统计 数学 政治学 法学 操作系统
作者
Prithwiraj Choudhury,Ryan Allen,Michael G. Endres
出处
期刊:Strategic Management Journal [Wiley]
卷期号:42 (1): 30-57 被引量:139
标识
DOI:10.1002/smj.3215
摘要

Abstract Research Summary Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post hoc analysis of regression results to detect patterns that may have gone unnoticed. However, ML models should not be treated as the result of a deductive causal test. To demonstrate the application of ML for pattern discovery, we implement ML algorithms to study employee turnover at a large technology company. We interpret the relationships between variables using partial dependence plots, which uncover surprising nonlinear and interdependent patterns between variables that may have gone unnoticed using traditional methods. To guide readers evaluating ML for pattern discovery, we provide guidance for evaluating model performance, highlight human decisions in the process, and warn of common misinterpretation pitfalls. The Supporting Information section provides code and data to implement the algorithms demonstrated in this article. Managerial Summary Supervised machine learning (ML) methods are a powerful toolkit that might help managers and researchers discover interesting patterns in large and complex data. We demonstrate this by using several ML algorithms to investigate the drivers of employee turnover at a large technology company. We evaluate the performance of the models, and use visual tools to interpret the patterns revealed. These patterns can be useful in understanding turnover, but we caution not to confuse correlation with causation. These methods should be viewed as “exploratory” and not conclusive proof of relationships in the data. Our guidance can be helpful for managers evaluating analysis conducted by data scientists in their organizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵猕猴桃完成签到,获得积分10
刚刚
刚刚
刚刚
奥特超曼应助Ssss采纳,获得10
1秒前
Master_Ye完成签到,获得积分10
2秒前
菜菜发布了新的文献求助10
2秒前
3秒前
右右发布了新的文献求助10
3秒前
4秒前
余好运完成签到,获得积分20
4秒前
Bio应助耕牛热采纳,获得50
4秒前
tingting发布了新的文献求助10
4秒前
完美世界应助林夏采纳,获得10
4秒前
小蘑菇应助H28G采纳,获得10
5秒前
5秒前
jeffyoung发布了新的文献求助10
5秒前
6秒前
乾乾完成签到,获得积分10
6秒前
ED应助李振博采纳,获得10
6秒前
文卿发布了新的文献求助10
6秒前
钙片儿完成签到,获得积分10
7秒前
清脆立果完成签到,获得积分10
8秒前
8秒前
粗犷的凌兰完成签到,获得积分10
8秒前
8秒前
panjunlu发布了新的文献求助10
8秒前
9秒前
www0717发布了新的文献求助10
9秒前
zzz完成签到,获得积分10
10秒前
研友_ZlxxzZ完成签到,获得积分10
10秒前
归尘应助XS_QI采纳,获得10
10秒前
11秒前
Attempter完成签到,获得积分20
11秒前
Du发布了新的文献求助10
11秒前
钙片儿发布了新的文献求助10
11秒前
12秒前
大眼睛的草莓完成签到,获得积分10
12秒前
文卿完成签到,获得积分10
12秒前
12秒前
酷酷李可爱婕完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582