Machine learning for pattern discovery in management research

机器学习 因果关系 相互依存 过程(计算) 灵活性(工程) 人工智能 计算机科学 数据科学 政治学 数学 统计 操作系统 法学
作者
Prithwiraj Choudhury,Ryan Allen,Michael G. Endres
出处
期刊:Strategic Management Journal [Wiley]
卷期号:42 (1): 30-57 被引量:121
标识
DOI:10.1002/smj.3215
摘要

Abstract Research Summary Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post hoc analysis of regression results to detect patterns that may have gone unnoticed. However, ML models should not be treated as the result of a deductive causal test. To demonstrate the application of ML for pattern discovery, we implement ML algorithms to study employee turnover at a large technology company. We interpret the relationships between variables using partial dependence plots, which uncover surprising nonlinear and interdependent patterns between variables that may have gone unnoticed using traditional methods. To guide readers evaluating ML for pattern discovery, we provide guidance for evaluating model performance, highlight human decisions in the process, and warn of common misinterpretation pitfalls. The Supporting Information section provides code and data to implement the algorithms demonstrated in this article. Managerial Summary Supervised machine learning (ML) methods are a powerful toolkit that might help managers and researchers discover interesting patterns in large and complex data. We demonstrate this by using several ML algorithms to investigate the drivers of employee turnover at a large technology company. We evaluate the performance of the models, and use visual tools to interpret the patterns revealed. These patterns can be useful in understanding turnover, but we caution not to confuse correlation with causation. These methods should be viewed as “exploratory” and not conclusive proof of relationships in the data. Our guidance can be helpful for managers evaluating analysis conducted by data scientists in their organizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mdmdd完成签到,获得积分10
2秒前
科目三应助小朱采纳,获得10
3秒前
Orange应助Skywalker采纳,获得10
3秒前
3秒前
刘松发布了新的文献求助10
3秒前
小沈发布了新的文献求助10
4秒前
wwwwww发布了新的文献求助10
4秒前
一个橘子发布了新的文献求助10
5秒前
luxiansheng完成签到,获得积分10
5秒前
5秒前
包子完成签到,获得积分10
5秒前
wmk完成签到,获得积分10
7秒前
8秒前
11秒前
刘松完成签到,获得积分20
12秒前
青天鸟1989发布了新的文献求助10
12秒前
chaotianjiao完成签到 ,获得积分10
13秒前
一个橘子完成签到,获得积分10
15秒前
玩命的靖仇完成签到 ,获得积分10
17秒前
20秒前
买菜市民熊先生完成签到,获得积分10
22秒前
小蒋完成签到 ,获得积分10
22秒前
24秒前
Billy应助蛙蛙采纳,获得30
24秒前
Skywalker发布了新的文献求助10
24秒前
25秒前
ming发布了新的文献求助10
28秒前
任性的微笑完成签到,获得积分10
28秒前
30秒前
嗯嗯嗯发布了新的文献求助10
30秒前
小二郎应助科研通管家采纳,获得10
32秒前
32秒前
ding应助科研通管家采纳,获得10
32秒前
嗯哼应助科研通管家采纳,获得20
33秒前
Lucas应助科研通管家采纳,获得10
33秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
干饭发布了新的文献求助20
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
上官若男应助科研通管家采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299938
求助须知:如何正确求助?哪些是违规求助? 2934780
关于积分的说明 8470445
捐赠科研通 2608342
什么是DOI,文献DOI怎么找? 1424154
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645601