Machine learning for pattern discovery in management research

机器学习 因果关系 相互依存 过程(计算) 灵活性(工程) 人工智能 计算机科学 数据科学 统计 数学 政治学 法学 操作系统
作者
Prithwiraj Choudhury,Ryan Allen,Michael G. Endres
出处
期刊:Strategic Management Journal [Wiley]
卷期号:42 (1): 30-57 被引量:155
标识
DOI:10.1002/smj.3215
摘要

Abstract Research Summary Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post hoc analysis of regression results to detect patterns that may have gone unnoticed. However, ML models should not be treated as the result of a deductive causal test. To demonstrate the application of ML for pattern discovery, we implement ML algorithms to study employee turnover at a large technology company. We interpret the relationships between variables using partial dependence plots, which uncover surprising nonlinear and interdependent patterns between variables that may have gone unnoticed using traditional methods. To guide readers evaluating ML for pattern discovery, we provide guidance for evaluating model performance, highlight human decisions in the process, and warn of common misinterpretation pitfalls. The Supporting Information section provides code and data to implement the algorithms demonstrated in this article. Managerial Summary Supervised machine learning (ML) methods are a powerful toolkit that might help managers and researchers discover interesting patterns in large and complex data. We demonstrate this by using several ML algorithms to investigate the drivers of employee turnover at a large technology company. We evaluate the performance of the models, and use visual tools to interpret the patterns revealed. These patterns can be useful in understanding turnover, but we caution not to confuse correlation with causation. These methods should be viewed as “exploratory” and not conclusive proof of relationships in the data. Our guidance can be helpful for managers evaluating analysis conducted by data scientists in their organizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenxian完成签到,获得积分10
刚刚
7ouo发布了新的文献求助10
1秒前
1秒前
watgos完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
火星上的万天完成签到,获得积分10
3秒前
Sandy11发布了新的文献求助200
3秒前
滑倩影完成签到,获得积分10
3秒前
凶狠的储完成签到,获得积分10
4秒前
5秒前
月月应助sinlar采纳,获得10
5秒前
6秒前
6秒前
Cosmos关注了科研通微信公众号
6秒前
7秒前
naturehome完成签到,获得积分10
7秒前
7秒前
刘丰铭发布了新的文献求助10
7秒前
DIPLO发布了新的文献求助10
7秒前
7秒前
假装学霸完成签到 ,获得积分10
8秒前
一一完成签到 ,获得积分10
8秒前
斯文败类应助流光采纳,获得10
8秒前
9秒前
9秒前
huohua完成签到 ,获得积分10
9秒前
fang完成签到 ,获得积分10
10秒前
zho关闭了zho文献求助
11秒前
烟花应助RB采纳,获得10
11秒前
11秒前
李小莉0419发布了新的文献求助30
12秒前
jing关注了科研通微信公众号
12秒前
emmm发布了新的文献求助10
12秒前
Lin完成签到,获得积分10
12秒前
小鱼完成签到,获得积分10
12秒前
WH发布了新的文献求助20
13秒前
yfh1997完成签到,获得积分10
13秒前
科研通AI6应助Shoshana采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809