Machine learning for pattern discovery in management research

机器学习 因果关系 相互依存 过程(计算) 灵活性(工程) 人工智能 计算机科学 数据科学 统计 数学 政治学 法学 操作系统
作者
Prithwiraj Choudhury,Ryan Allen,Michael G. Endres
出处
期刊:Strategic Management Journal [Wiley]
卷期号:42 (1): 30-57 被引量:155
标识
DOI:10.1002/smj.3215
摘要

Abstract Research Summary Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post hoc analysis of regression results to detect patterns that may have gone unnoticed. However, ML models should not be treated as the result of a deductive causal test. To demonstrate the application of ML for pattern discovery, we implement ML algorithms to study employee turnover at a large technology company. We interpret the relationships between variables using partial dependence plots, which uncover surprising nonlinear and interdependent patterns between variables that may have gone unnoticed using traditional methods. To guide readers evaluating ML for pattern discovery, we provide guidance for evaluating model performance, highlight human decisions in the process, and warn of common misinterpretation pitfalls. The Supporting Information section provides code and data to implement the algorithms demonstrated in this article. Managerial Summary Supervised machine learning (ML) methods are a powerful toolkit that might help managers and researchers discover interesting patterns in large and complex data. We demonstrate this by using several ML algorithms to investigate the drivers of employee turnover at a large technology company. We evaluate the performance of the models, and use visual tools to interpret the patterns revealed. These patterns can be useful in understanding turnover, but we caution not to confuse correlation with causation. These methods should be viewed as “exploratory” and not conclusive proof of relationships in the data. Our guidance can be helpful for managers evaluating analysis conducted by data scientists in their organizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
柠檬泡芙完成签到,获得积分10
1秒前
111111111完成签到,获得积分10
1秒前
Hello应助刘莹采纳,获得10
1秒前
今后应助hygge采纳,获得10
2秒前
Exotic发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
111111111发布了新的文献求助10
3秒前
YYJ25完成签到,获得积分10
4秒前
酷酷发布了新的文献求助10
4秒前
开心的饼干完成签到,获得积分10
4秒前
我想要番茄完成签到,获得积分10
5秒前
5秒前
6秒前
lmm发布了新的文献求助10
6秒前
积极松鼠发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
风中思松发布了新的文献求助10
8秒前
斑驳发布了新的文献求助10
8秒前
发发发完成签到,获得积分10
9秒前
搜集达人应助yiyi采纳,获得10
9秒前
9秒前
9秒前
皮凡完成签到,获得积分10
10秒前
绝世机智大美女完成签到,获得积分10
10秒前
动听的母鸡完成签到,获得积分10
11秒前
11秒前
Jasper应助Iris采纳,获得10
12秒前
12秒前
白白的鱼发布了新的文献求助10
12秒前
13秒前
13秒前
夕诙应助lanlan采纳,获得30
13秒前
14秒前
wuhuhu给wuhuhu的求助进行了留言
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605158
求助须知:如何正确求助?哪些是违规求助? 4013165
关于积分的说明 12426474
捐赠科研通 3693780
什么是DOI,文献DOI怎么找? 2036677
邀请新用户注册赠送积分活动 1069608
科研通“疑难数据库(出版商)”最低求助积分说明 953961