Multi-Agent Deep Reinforcement Learning for Urban Traffic Light Control in Vehicular Networks

强化学习 交叉口(航空) 计算机科学 过程(计算) 交通拥挤 分布式计算 人工智能 工程类 运输工程 操作系统
作者
Tong Wu,Pan Zhou,Kai Li,Yali Yuan,Xiumin Wang,Huawei Huang,Dapeng Wu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (8): 8243-8256 被引量:137
标识
DOI:10.1109/tvt.2020.2997896
摘要

As urban traffic condition is diverse and complicated, applying reinforcement learning to reduce traffic congestion becomes one of the hot and promising topics. Especially, how to coordinate the traffic light controllers of multiple intersections is a key challenge for multi-agent reinforcement learning (MARL). Most existing MARL studies are based on traditional Q-learning, but unstable environment leads to poor learning in the complicated and dynamic traffic scenarios. In this paper, we propose a novel multi-agent recurrent deep deterministic policy gradient (MARDDPG) algorithm based on deep deterministic policy gradient (DDPG) algorithm for traffic light control (TLC) in vehiclar networks. Specifically, the centralized learning in each critic network enables each agent to estimate the policies of other agents in the decision-making process and each agent can coordinate with each other, alleviating the problem of poor learning performance caused by environmental instability. The decentralized execution enables each agent to make decisions independently. We share parameters in actor networks to speed up the training process and reduce the memory footprint. The addition of LSTM is beneficial to alleviate the instability of the environment caused by partial observable state. We utilize surveillance cameras and vehicular networks to collect status information for each intersection. Unlike previous work, we have not only considered the vehicle but also considered the pedestrians waiting to pass through the intersection. Moreover, we also set different priorities for buses and ordinary vehicles. The experimental results in a vehicular network show that our method can run stably in various scenarios and coordinate multiple intersections, which significantly reduces vehicle congestion and pedestrian congestion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Forever完成签到,获得积分10
刚刚
ezvsnoc完成签到,获得积分10
刚刚
风筝鱼完成签到 ,获得积分10
1秒前
喜悦香薇完成签到 ,获得积分10
1秒前
xixi完成签到 ,获得积分10
1秒前
李健应助科研小哥采纳,获得10
2秒前
Lyue完成签到,获得积分10
2秒前
蛋挞完成签到 ,获得积分10
3秒前
你是我爹完成签到 ,获得积分10
4秒前
悦耳亦云完成签到 ,获得积分10
4秒前
mei完成签到,获得积分10
6秒前
澧abc完成签到 ,获得积分10
6秒前
晓听竹雨完成签到,获得积分10
6秒前
满意听白完成签到 ,获得积分10
6秒前
犹豫新梅完成签到,获得积分10
6秒前
7秒前
8秒前
狸小狐完成签到,获得积分10
8秒前
ee完成签到,获得积分10
9秒前
落叶完成签到 ,获得积分10
9秒前
贱小贱完成签到,获得积分10
9秒前
循环bug完成签到,获得积分10
10秒前
北冥鱼发布了新的文献求助10
11秒前
Hastur00完成签到,获得积分10
11秒前
绿萝完成签到,获得积分10
12秒前
liuqi67发布了新的文献求助30
12秒前
小心科研完成签到,获得积分10
13秒前
CAS完成签到,获得积分10
13秒前
糊糊完成签到 ,获得积分10
13秒前
Lucas应助霸气的念云采纳,获得10
13秒前
hhydeppt完成签到,获得积分10
13秒前
执着手套完成签到,获得积分10
13秒前
qn完成签到,获得积分10
13秒前
美丽完成签到 ,获得积分10
14秒前
哈哈哈完成签到,获得积分10
14秒前
满意的芸完成签到 ,获得积分10
15秒前
15秒前
橙子完成签到 ,获得积分10
16秒前
烂漫夜梅完成签到,获得积分10
17秒前
神秘面筋男完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565