Multi-Agent Deep Reinforcement Learning for Urban Traffic Light Control in Vehicular Networks

强化学习 交叉口(航空) 计算机科学 过程(计算) 交通拥挤 分布式计算 人工智能 工程类 运输工程 操作系统
作者
Tong Wu,Pan Zhou,Kai Liu,Yali Yuan,Xiumin Wang,Huawei Huang,Dapeng Wu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (8): 8243-8256 被引量:179
标识
DOI:10.1109/tvt.2020.2997896
摘要

As urban traffic condition is diverse and complicated, applying reinforcement learning to reduce traffic congestion becomes one of the hot and promising topics. Especially, how to coordinate the traffic light controllers of multiple intersections is a key challenge for multi-agent reinforcement learning (MARL). Most existing MARL studies are based on traditional Q-learning, but unstable environment leads to poor learning in the complicated and dynamic traffic scenarios. In this paper, we propose a novel multi-agent recurrent deep deterministic policy gradient (MARDDPG) algorithm based on deep deterministic policy gradient (DDPG) algorithm for traffic light control (TLC) in vehiclar networks. Specifically, the centralized learning in each critic network enables each agent to estimate the policies of other agents in the decision-making process and each agent can coordinate with each other, alleviating the problem of poor learning performance caused by environmental instability. The decentralized execution enables each agent to make decisions independently. We share parameters in actor networks to speed up the training process and reduce the memory footprint. The addition of LSTM is beneficial to alleviate the instability of the environment caused by partial observable state. We utilize surveillance cameras and vehicular networks to collect status information for each intersection. Unlike previous work, we have not only considered the vehicle but also considered the pedestrians waiting to pass through the intersection. Moreover, we also set different priorities for buses and ordinary vehicles. The experimental results in a vehicular network show that our method can run stably in various scenarios and coordinate multiple intersections, which significantly reduces vehicle congestion and pedestrian congestion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xm完成签到,获得积分10
1秒前
谦让的含海完成签到,获得积分10
1秒前
所所应助包容的剑采纳,获得10
1秒前
1秒前
2秒前
lynn_zhang发布了新的文献求助10
2秒前
3秒前
xh发布了新的文献求助10
3秒前
所所应助luoshi采纳,获得10
3秒前
飞龙在天完成签到 ,获得积分10
3秒前
深爱不疑完成签到,获得积分10
4秒前
知识四面八方来完成签到 ,获得积分10
4秒前
我就是我完成签到,获得积分10
4秒前
4秒前
4秒前
heart完成签到,获得积分10
4秒前
keroro发布了新的文献求助10
5秒前
6秒前
pzc发布了新的文献求助10
6秒前
深爱不疑发布了新的文献求助10
7秒前
jennie完成签到 ,获得积分10
7秒前
徐徐发布了新的文献求助80
7秒前
不信慕斯完成签到,获得积分10
7秒前
Jokeypu完成签到,获得积分10
7秒前
gnr2000发布了新的文献求助30
8秒前
8秒前
song99完成签到,获得积分10
8秒前
清醒的ZY发布了新的文献求助50
8秒前
二小发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
澹台灭明发布了新的文献求助10
9秒前
9秒前
bkagyin应助AteeqBaloch采纳,获得10
10秒前
二二二发布了新的文献求助10
10秒前
万能图书馆应助LIU采纳,获得10
10秒前
绿麦盲区发布了新的文献求助10
10秒前
FIGGIEKIO完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762