Elaboration of a multisequence MRI-based radiomics signature for the preoperative prediction of the muscle-invasive status of bladder cancer: a double-center study

医学 神经组阅片室 膀胱癌 放射科 无线电技术 介入放射学 超声波 磁共振成像 精化 癌症 神经学 内科学 人文学科 精神科 哲学
作者
Huanjun Wang,Xiaopan Xu,Xi Zhang,Yang Liu,Longyuan Ouyang,Peng Du,Shurong Li,Qiang Tian,Jian Ling,Yan Guo,Hongbing Lu
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (9): 4816-4827 被引量:53
标识
DOI:10.1007/s00330-020-06796-8
摘要

To develop a multisequence MRI-based radiomics signature for the preoperative prediction of the muscle-invasive status of bladder cancer (BCa). This retrospective study involved 106 eligible patients from two independent clinical centers. All patients underwent a preoperative 3.0 T MRI scan with T2-weighted image (T2WI) and multi-b-value diffusion-weighted image (DWI) sequences. In total, 1404 radiomics features were extracted from the largest region of the reported tumor locations on the T2WI, DWI, and corresponding apparent diffusion coefficient map (ADC) of each patient. A radiomics signature, namely the Radscore, was then generated using the recursive feature elimination approach and a logistic regression algorithm in a training cohort (n = 64). Its performance was then validated in an independent validation cohort (n = 42). The primary imaging and clinical factors in conjunction with the Radscore were used to determine whether the performance could be further improved. The Radscore, generated by 36 selected radiomics features, demonstrated a favorable ability to predict muscle-invasive BCa status in both the training (AUC 0.880) and validation (AUC 0.813) cohorts. Subsequently, integrating the two independent predictors (including the Radscore and MRI-determined tumor stalk) into a nomogram exhibited more favorable discriminatory performance, with the AUC improved to 0.924 and 0.877 in both cohorts, respectively. The proposed multisequence MRI-based radiomics signature alone could be an effective tool for quantitative prediction of muscle-invasive status of BCa. Integrating the Radscore with MRI-determined tumor stalk could further improve the discriminatory power, realizing more accurate prediction of nonmuscle-invasive and muscle-invasive BCa. • DWI is superior to T2WI sequence in reflecting the heterogeneous differences between NMIBC and MIBC, and multisequence MRI helps in the preoperative prediction of muscle-invasive status of BCa. • Co-occurrence (CM), run-length matrix (RLM), and gray-level size zone matrix (GLSZM) features were the favorable feature categories for the prediction of muscle-invasive status of BCa. • The Radscore (proposed multisequence MRI-based radiomics signature) helps predict preoperatively muscle invasion. Combination with the MRI-determined tumor stalk further improves prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明晨应助碎星采纳,获得10
刚刚
俊逸星月关注了科研通微信公众号
刚刚
柳条儿发布了新的文献求助10
1秒前
1秒前
辞暮发布了新的文献求助10
1秒前
3秒前
许婵发布了新的文献求助10
3秒前
Lore完成签到 ,获得积分10
5秒前
6秒前
AKN完成签到,获得积分10
7秒前
8秒前
sgt完成签到,获得积分10
9秒前
9秒前
dmsoli完成签到,获得积分20
10秒前
enterdawn完成签到,获得积分10
10秒前
10秒前
PAIDAXXXX完成签到,获得积分10
12秒前
13秒前
14秒前
mangludeyu发布了新的文献求助10
15秒前
subass发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
林夕完成签到,获得积分10
18秒前
科目三应助luodan采纳,获得10
18秒前
佳AOAOAO完成签到,获得积分10
19秒前
huzi2009完成签到,获得积分10
19秒前
19秒前
19秒前
大个应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479504
求助须知:如何正确求助?哪些是违规求助? 3070099
关于积分的说明 9116702
捐赠科研通 2761842
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700982
科研通“疑难数据库(出版商)”最低求助积分说明 699985