Elaboration of a multisequence MRI-based radiomics signature for the preoperative prediction of the muscle-invasive status of bladder cancer: a double-center study

医学 神经组阅片室 膀胱癌 放射科 无线电技术 介入放射学 超声波 磁共振成像 精化 癌症 神经学 内科学 人文学科 精神科 哲学
作者
Huanjun Wang,Xiaopan Xu,Xi Zhang,Yang Liu,Longyuan Ouyang,Peng Du,Shurong Li,Qiang Tian,Jian Ling,Yan Guo,Hongbing Lu
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (9): 4816-4827 被引量:53
标识
DOI:10.1007/s00330-020-06796-8
摘要

To develop a multisequence MRI-based radiomics signature for the preoperative prediction of the muscle-invasive status of bladder cancer (BCa). This retrospective study involved 106 eligible patients from two independent clinical centers. All patients underwent a preoperative 3.0 T MRI scan with T2-weighted image (T2WI) and multi-b-value diffusion-weighted image (DWI) sequences. In total, 1404 radiomics features were extracted from the largest region of the reported tumor locations on the T2WI, DWI, and corresponding apparent diffusion coefficient map (ADC) of each patient. A radiomics signature, namely the Radscore, was then generated using the recursive feature elimination approach and a logistic regression algorithm in a training cohort (n = 64). Its performance was then validated in an independent validation cohort (n = 42). The primary imaging and clinical factors in conjunction with the Radscore were used to determine whether the performance could be further improved. The Radscore, generated by 36 selected radiomics features, demonstrated a favorable ability to predict muscle-invasive BCa status in both the training (AUC 0.880) and validation (AUC 0.813) cohorts. Subsequently, integrating the two independent predictors (including the Radscore and MRI-determined tumor stalk) into a nomogram exhibited more favorable discriminatory performance, with the AUC improved to 0.924 and 0.877 in both cohorts, respectively. The proposed multisequence MRI-based radiomics signature alone could be an effective tool for quantitative prediction of muscle-invasive status of BCa. Integrating the Radscore with MRI-determined tumor stalk could further improve the discriminatory power, realizing more accurate prediction of nonmuscle-invasive and muscle-invasive BCa. • DWI is superior to T2WI sequence in reflecting the heterogeneous differences between NMIBC and MIBC, and multisequence MRI helps in the preoperative prediction of muscle-invasive status of BCa. • Co-occurrence (CM), run-length matrix (RLM), and gray-level size zone matrix (GLSZM) features were the favorable feature categories for the prediction of muscle-invasive status of BCa. • The Radscore (proposed multisequence MRI-based radiomics signature) helps predict preoperatively muscle invasion. Combination with the MRI-determined tumor stalk further improves prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
该换手机完成签到,获得积分10
1秒前
mimi123409完成签到,获得积分10
1秒前
想抱完成签到,获得积分10
1秒前
QQ完成签到,获得积分10
2秒前
科目三应助tesla采纳,获得10
2秒前
寒沙浅流lh完成签到,获得积分20
2秒前
3秒前
3秒前
关键词完成签到,获得积分10
3秒前
小白完成签到,获得积分10
3秒前
aq22完成签到 ,获得积分10
4秒前
YL完成签到,获得积分10
5秒前
灵美完成签到,获得积分10
5秒前
kk完成签到,获得积分10
7秒前
小黑完成签到 ,获得积分10
7秒前
学习之人发布了新的文献求助10
8秒前
你猜是什么昵称完成签到 ,获得积分10
8秒前
大雁完成签到 ,获得积分10
8秒前
尹山蝶完成签到,获得积分10
8秒前
9秒前
LXG666完成签到,获得积分10
9秒前
Seren完成签到,获得积分10
9秒前
Leo完成签到,获得积分10
10秒前
qhcaywy完成签到,获得积分10
10秒前
青牛完成签到,获得积分10
10秒前
尼克拉倒完成签到,获得积分10
10秒前
AJ完成签到 ,获得积分10
11秒前
liuyannong发布了新的文献求助10
11秒前
CodeCraft应助白华苍松采纳,获得10
11秒前
Getlogger完成签到,获得积分10
11秒前
liang_zai完成签到,获得积分10
11秒前
LonelyCMA完成签到 ,获得积分10
11秒前
自信疾完成签到,获得积分10
12秒前
joy完成签到,获得积分10
13秒前
jiayou完成签到,获得积分10
13秒前
SciGPT应助tesla采纳,获得10
13秒前
科目三应助nyfz2002采纳,获得10
13秒前
危机的慕卉完成签到 ,获得积分10
14秒前
zhouxinxiao完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890