亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields

人工智能 分类器(UML) 模式识别(心理学) 人工神经网络 计算机科学 水田 杂草 分割 试验装置 粒子群优化 机器学习 农学 生物
作者
Mojtaba Dadashzadeh,Yousef Abbaspour‐Gilandeh,Tarahom Mesri Gundoshmian,Sajad Sabzi,José Luis Hernández-Hernández,Mario Hernández-Hernández,Juan Ignacio Arribas
出处
期刊:Plants [MDPI AG]
卷期号:9 (5): 559-559 被引量:52
标识
DOI:10.3390/plants9050559
摘要

Site-specific weed management and selective application of herbicides as eco-friendly techniques are still challenging tasks to perform, especially for densely cultivated crops, such as rice. This study is aimed at developing a stereo vision system for distinguishing between rice plants and weeds and further discriminating two types of weeds in a rice field by using artificial neural networks (ANNs) and two metaheuristic algorithms. For this purpose, stereo videos were recorded across the rice field and different channels were extracted and decomposed into the constituent frames. Next, upon pre-processing and segmentation of the frames, green plants were extracted out of the background. For accurate discrimination of the rice and weeds, a total of 302 color, shape, and texture features were identified. Two metaheuristic algorithms, namely particle swarm optimization (PSO) and the bee algorithm (BA), were used to optimize the neural network for selecting the most effective features and classifying different types of weeds, respectively. Comparing the proposed classification method with the K-nearest neighbors (KNN) classifier, it was found that the proposed ANN-BA classifier reached accuracies of 88.74% and 87.96% for right and left channels, respectively, over the test set. Taking into account either the arithmetic or the geometric means as the basis, the accuracies were increased up to 92.02% and 90.7%, respectively, over the test set. On the other hand, the KNN suffered from more cases of misclassification, as compared to the proposed ANN-BA classifier, generating an overall accuracy of 76.62% and 85.59% for the classification of the right and left channel data, respectively, and 85.84% and 84.07% for the arithmetic and geometric mean values, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
18秒前
快乐的如风完成签到,获得积分10
20秒前
22秒前
英勇羿发布了新的文献求助100
24秒前
56秒前
1分钟前
1分钟前
诺hn完成签到 ,获得积分10
1分钟前
田様应助LL采纳,获得10
1分钟前
1分钟前
LL发布了新的文献求助10
1分钟前
1分钟前
么么么发布了新的文献求助10
1分钟前
1分钟前
么么么完成签到 ,获得积分10
2分钟前
2分钟前
李九妹完成签到 ,获得积分10
2分钟前
经冰夏完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
大个应助含蓄戾采纳,获得10
2分钟前
轩仔发布了新的文献求助10
2分钟前
2分钟前
NCL完成签到,获得积分10
2分钟前
2分钟前
好巧完成签到,获得积分10
2分钟前
含蓄戾完成签到,获得积分10
2分钟前
2分钟前
含蓄戾发布了新的文献求助10
2分钟前
医者仁心完成签到,获得积分10
2分钟前
Julie发布了新的文献求助10
2分钟前
打打应助NCL采纳,获得10
2分钟前
搜集达人应助材料摆渡人采纳,获得10
2分钟前
2分钟前
choyng发布了新的文献求助10
3分钟前
科研通AI2S应助XIN采纳,获得10
3分钟前
热带蚂蚁完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798015
关于积分的说明 7826470
捐赠科研通 2454516
什么是DOI,文献DOI怎么找? 1306328
科研通“疑难数据库(出版商)”最低求助积分说明 627704
版权声明 601522