亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes

微流控 纳米技术 材料科学 生物信息学 频道(广播) 基因沉默 层流 计算机科学 化学 工程类 电信 生物化学 基因 航空航天工程
作者
Yongquan Li,Johan Boetker,Jukka Rantanen,Mingshi Yang,Jukka Rantanen
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:583: 119388-119388 被引量:15
标识
DOI:10.1016/j.ijpharm.2020.119388
摘要

Small interfering RNA (siRNA) is regarded as one of the most powerful tools for the treatment of various diseases by downregulating the expression of aberrant proteins. Delivery vehicle is often necessary for getting siRNA into the cells. Nanocomplex using polyamidoamine (PAMAM) is regarded a promising approach for the delivery of siRNA. The size of siRNA nanocomplexes is a critical attribute in order to achieve high gene silencing efficiency in vivo. Microfluidics provides advantages in the preparation of siRNA nanocomplexes due to better reproducibility and a potential for more robust process control. The mixing efficiency of siRNA and PAMAM is different in microfluidics systems with different geometries, therefore, resulting in nanocomplexes with varying size attributes. In this study, hydrodynamic flow focusing microfluidic chips with different channel designs, i.e. diameters/widths, channel shapes (cylindrical/rectangular) and inter-channel spacings were optimized in silico and rapidly prototyped using 3D printing and finally, used for production of siRNA nanocomplexes. The fluid mixing inside the microfluidic chips was simulated using the finite element method (FEM) with the single-phase laminar flow interface in connection with the transport of diluted species interface. The digital design and optimization of microfluidic chips showed consistency with experimental results. It was concluded that the size of siRNA nanocomplexes can be controlled by adjusting the channel geometry of the microfluidic chips and the simulation with FEM could be used to facilitate the design and optimization of microfluidic chips in order to produce nanocomplexes with desirable attributes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
18秒前
Ecokarster完成签到,获得积分10
30秒前
楚楚完成签到 ,获得积分10
34秒前
所所应助鳄鱼不做饿梦采纳,获得50
35秒前
111完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
田様应助郭楠楠采纳,获得30
1分钟前
2分钟前
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
郭楠楠发布了新的文献求助30
2分钟前
2分钟前
Xyyy完成签到,获得积分10
2分钟前
RED发布了新的文献求助10
2分钟前
满天星发布了新的文献求助10
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
3分钟前
缨绒完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
满天星完成签到 ,获得积分10
4分钟前
zqr发布了新的文献求助10
4分钟前
Hello应助Raunio采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
abdo完成签到,获得积分10
5分钟前
kuoping完成签到,获得积分0
5分钟前
小蘑菇应助成太采纳,获得10
5分钟前
万能图书馆应助zxl采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
郭楠楠发布了新的文献求助10
5分钟前
5分钟前
清泉发布了新的文献求助10
5分钟前
5分钟前
成太发布了新的文献求助10
5分钟前
zxl发布了新的文献求助10
5分钟前
CodeCraft应助郭楠楠采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861425
关于积分的说明 15107679
捐赠科研通 4823016
什么是DOI,文献DOI怎么找? 2581850
邀请新用户注册赠送积分活动 1536017
关于科研通互助平台的介绍 1494385