In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes

微流控 纳米技术 材料科学 生物信息学 频道(广播) 基因沉默 层流 计算机科学 化学 工程类 电信 生物化学 基因 航空航天工程
作者
Yongquan Li,Johan Boetker,Jukka Rantanen,Mingshi Yang,Jukka Rantanen
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:583: 119388-119388 被引量:15
标识
DOI:10.1016/j.ijpharm.2020.119388
摘要

Small interfering RNA (siRNA) is regarded as one of the most powerful tools for the treatment of various diseases by downregulating the expression of aberrant proteins. Delivery vehicle is often necessary for getting siRNA into the cells. Nanocomplex using polyamidoamine (PAMAM) is regarded a promising approach for the delivery of siRNA. The size of siRNA nanocomplexes is a critical attribute in order to achieve high gene silencing efficiency in vivo. Microfluidics provides advantages in the preparation of siRNA nanocomplexes due to better reproducibility and a potential for more robust process control. The mixing efficiency of siRNA and PAMAM is different in microfluidics systems with different geometries, therefore, resulting in nanocomplexes with varying size attributes. In this study, hydrodynamic flow focusing microfluidic chips with different channel designs, i.e. diameters/widths, channel shapes (cylindrical/rectangular) and inter-channel spacings were optimized in silico and rapidly prototyped using 3D printing and finally, used for production of siRNA nanocomplexes. The fluid mixing inside the microfluidic chips was simulated using the finite element method (FEM) with the single-phase laminar flow interface in connection with the transport of diluted species interface. The digital design and optimization of microfluidic chips showed consistency with experimental results. It was concluded that the size of siRNA nanocomplexes can be controlled by adjusting the channel geometry of the microfluidic chips and the simulation with FEM could be used to facilitate the design and optimization of microfluidic chips in order to produce nanocomplexes with desirable attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助石狗西采纳,获得10
1秒前
fls221完成签到,获得积分10
2秒前
3秒前
不配.应助You采纳,获得10
5秒前
桃紫完成签到,获得积分10
6秒前
6秒前
7秒前
稳重岩完成签到 ,获得积分10
7秒前
7秒前
Jenny应助妞妞月采纳,获得10
8秒前
shunsui顺遂完成签到,获得积分10
9秒前
Lucas应助哈哈哈哈采纳,获得10
9秒前
小一完成签到,获得积分10
10秒前
殷勤的咖啡完成签到,获得积分10
10秒前
怕黑的无招完成签到,获得积分10
11秒前
研友_ZG4ml8发布了新的文献求助10
11秒前
CodeCraft应助bobo采纳,获得10
12秒前
14秒前
起风了发布了新的文献求助10
14秒前
李健的小迷弟应助NOEYEDEER采纳,获得10
15秒前
17秒前
Lou完成签到,获得积分10
17秒前
fashing完成签到,获得积分10
19秒前
cpxliteratur完成签到,获得积分10
21秒前
Hello应助无情的瑾瑜采纳,获得10
21秒前
赘婿应助研友_ZG4ml8采纳,获得10
22秒前
星辰大海应助菜菜Cc采纳,获得10
23秒前
高屋建瓴完成签到,获得积分10
24秒前
起风了完成签到,获得积分10
24秒前
25秒前
NexusExplorer应助Panax采纳,获得10
25秒前
Airy完成签到,获得积分10
26秒前
sunny完成签到,获得积分10
27秒前
27秒前
哈哈哈哈发布了新的文献求助10
28秒前
深情安青应助科研通管家采纳,获得10
29秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
芋鱼予郁应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134988
求助须知:如何正确求助?哪些是违规求助? 2785963
关于积分的说明 7774538
捐赠科研通 2441779
什么是DOI,文献DOI怎么找? 1298177
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825