支流
构造盆地
地质学
化学计量学
水文学(农业)
海洋学
环境科学
地理
地貌学
化学
地图学
岩土工程
有机化学
作者
Nolan J. T. Pearce,Adam G. Yates
标识
DOI:10.1016/j.jglr.2020.05.002
摘要
Abstract Nutrient management in the Great Lakes-St. Lawrence basin has focused on the reduction of tributary phosphorus inputs to control lake eutrophication. However, the regional implications of nutrient enrichment on stream eutrophication and management remain understudied. We compared nutrient concentrations and stoichiometric ratios of carbon, nitrogen, and phosphorus to evaluate spatial and temporal patterns in the potential for nutrient limitation in streams of the lower Great Lakes-St. Lawrence basin in Ontario, Canada. Monitoring data from 127 streams was used to describe macronutrient concentrations and stoichiometry over a 10-year period (2007–2016). Nutrient enrichment was widespread as 65% and 68% of studied streams had nitrogen and phosphorus concentrations above regional guidelines, respectively. Macronutrient stoichiometry indicated that 35% of streams were depleted for phosphorus and 65% were co-depleted for nitrogen and phosphorus relative to the Redfield ratio. However, algal production in most streams was likely nutrient saturated such that only 2% of streams showed the potential for phosphorus limitation and 21% for nitrogen and phosphorus co-limitation. Temporal assessment of individual nutrients that were depleted indicated minimal variation within most streams. In contrast, macronutrient stoichiometry was associated with spatial patterns in catchment land-cover whereby a shift from nitrogen and phosphorus co-depletion to phosphorus depletion occurred with increasing agriculture and decreasing natural and wetland cover. Our results suggest that phosphorus reductions alone may be insufficient to manage stream eutrophication in the Great Lakes-St. Lawrence basin and that dual nutrient reductions needed to improve stream conditions may be achievable through land-cover management.
科研通智能强力驱动
Strongly Powered by AbleSci AI