Molecular Design of a Highly Stable Single-Ion Conducting Polymer Gel Electrolyte

材料科学 电解质 化学工程 法拉第效率 电极 聚合物 离子电导率 电化学窗口 电导率 电化学 离子液体 复合材料 有机化学 物理化学 化学 催化作用 工程类
作者
Kewei Liu,Sisi Jiang,Trevor L. Dzwiniel,Hong-Keun Kim,Yu Zhou,Nancy L. Dietz Rago,Jae Jin Kim,Timothy T. Fister,Jianzhong Yang,Qian Liu,James A. Gilbert,Lei Cheng,Venkat Srinivasan,Zhengcheng Zhang,Chen Liao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:16
标识
DOI:10.1021/acsami.0c03363
摘要

Single-ion conducting (SIC) polymer electrolytes with a high Li transference number (tLi+) have shown the capability to enable enhanced battery performance and safety by avoiding liquid-electrolyte leakage and suppressing Li dendrite formation. However, issues of insufficient ionic conductivity, low electrochemical stability, and poor polymer/electrode interfacial contact have greatly hindered their commercial use. Here, a Li-containing boron-centered fluorinated SIC polymer gel electrolyte (LiBFSIE) was rationally designed to achieve a high tLi+ and high electrochemical stability. Owing to the low dissociation energy of the boron-centered anion and Li+, the as-prepared LiBFSIE exhibited an ionic conductivity of 2 × 10-4 S/cm at 35 °C, which is exclusively contributed by Li ions owing to a high tLi+ of 0.93. Both simulation and experimental approaches were applied to investigate the ion diffusion and concentration gradient in the LiBFSIE and non-cross-linked dual-ion systems. Typical rectangular Li stripping/plating voltage profiles demonstrated the uniform Li deposition assisted by LiBFSIE. The interfacial contact and electrolyte infiltration were further optimized with an in situ UV-vis-initiated polymerization method together with the electrode materials. By virtue of the high electrochemical stability of LiBFSIE, the cells achieved a promising average Coulombic efficiency of 99.95% over 200 cycles, which is higher than that of liquid-electrolyte-based cells. No obvious capacity fading was observed, indicating the long-term stability of LiBFSIE for lithium metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助东风采纳,获得10
1秒前
3秒前
爱因斯坦发布了新的文献求助10
3秒前
脑洞疼应助cr采纳,获得10
3秒前
FashionBoy应助18117119107采纳,获得10
4秒前
buyi完成签到 ,获得积分10
5秒前
bkagyin应助神羊采纳,获得10
5秒前
5秒前
5秒前
6秒前
直率的心情完成签到,获得积分10
6秒前
CipherSage应助戴衡霞采纳,获得10
7秒前
CipherSage应助hello采纳,获得10
7秒前
无花果应助garyaa采纳,获得10
7秒前
晨儿发布了新的文献求助10
7秒前
苗条的非笑完成签到,获得积分10
8秒前
8秒前
8秒前
隐形曼青应助小卡拉米采纳,获得10
8秒前
9秒前
9秒前
陈大海发布了新的文献求助10
9秒前
wonderstruck发布了新的文献求助10
9秒前
高贵路灯完成签到,获得积分10
10秒前
Sky发布了新的文献求助10
11秒前
11秒前
12秒前
MXG完成签到,获得积分10
13秒前
段启瑞发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
Cecilia发布了新的文献求助10
16秒前
MXG发布了新的文献求助30
16秒前
17秒前
18秒前
Jyouang发布了新的文献求助10
19秒前
ZYH完成签到 ,获得积分10
19秒前
CodeCraft应助平常的秋天采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745172
求助须知:如何正确求助?哪些是违规求助? 3288097
关于积分的说明 10057400
捐赠科研通 3004353
什么是DOI,文献DOI怎么找? 1649647
邀请新用户注册赠送积分活动 785439
科研通“疑难数据库(出版商)”最低求助积分说明 751077