相间
材料科学
电解质
电化学
同步加速器
空隙(复合材料)
电极
锂(药物)
纳米技术
快离子导体
化学工程
复合材料
化学
医学
遗传学
物理
物理化学
核物理学
工程类
生物
内分泌学
作者
John A. Lewis,Francisco Javier Quintero Cortes,Yuhgene Liu,John Miers,Ankit Verma,Bairav S. Vishnugopi,Jared Tippens,Dhruv Prakash,Thomas S. Marchese,Sang Yun Han,Chanhee Lee,Pralav P. Shetty,Hyun‐Wook Lee,Pavel Shevchenko,Francesco De Carlo,Christopher Saldaña,Partha P. Mukherjee,Matthew T. McDowell
出处
期刊:Nature Materials
[Springer Nature]
日期:2021-01-28
卷期号:20 (4): 503-510
被引量:240
标识
DOI:10.1038/s41563-020-00903-2
摘要
Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid–solid interfaces remains limited compared to at solid–liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (Li10SnP2S12) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries. Understanding electrochemical behaviour and stability at solid–solid interfaces remains challenging. Operando synchrotron X-ray computed microtomography loss reveals that reconfiguration of interfacial contact is critical to explain cell failure during solid-state battery cycling.
科研通智能强力驱动
Strongly Powered by AbleSci AI