WaveletKernelNet: An Interpretable Deep Neural Network for Industrial Intelligent Diagnosis

卷积神经网络 预言 计算机科学 人工智能 核(代数) 图层(电子) 小波 特征(语言学) 深度学习 断层(地质) 可视化 机器学习 保险丝(电气) 数据挖掘 模式识别(心理学) 工程类 数学 组合数学 语言学 化学 哲学 有机化学 地震学 地质学 电气工程
作者
Tianfu Li,Zhibin Zhao,Chuang Sun,Cheng Li,Xuefeng Chen,Ruqiang Yan,Robert X. Gao
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (4): 2302-2312 被引量:302
标识
DOI:10.1109/tsmc.2020.3048950
摘要

Convolutional neural network (CNN), with the ability of feature learning and nonlinear mapping, has demonstrated its effectiveness in prognostics and health management (PHM). However, an explanation on the physical meaning of a CNN architecture has rarely been studied. In this article, a novel wavelet-driven deep neural network, termed as WaveletKernelNet (WKN), is presented, where a continuous wavelet convolutional (CWConv) layer is designed to replace the first convolutional layer of the standard CNN. This enables the first CWConv layer to discover more meaningful kernels. Furthermore, only the scale parameter and translation parameter are directly learned from raw data at this CWConv layer. This provides a very effective way to obtain a customized kernel bank, specifically tuned for extracting defect-related impact component embedded in the vibration signal. In addition, three experimental studies using data from laboratory environment are carried out to verify the effectiveness of the proposed method for mechanical fault diagnosis. The experimental results show that the accuracy of the WKNs is higher than CNN by more than 10%, which indicate the importance of the designed CWConv layer. Besides, through theoretical analysis and feature map visualization, it is found that the WKNs are interpretable, have fewer parameters, and have the ability to converge faster within the same training epochs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
安安爱阎魔完成签到,获得积分10
2秒前
2秒前
与非发布了新的文献求助10
3秒前
4秒前
阿徐呀发布了新的文献求助10
5秒前
SciGPT应助酷炫的雅香采纳,获得10
5秒前
小黄发布了新的文献求助10
6秒前
7秒前
研友_Zeg3VL发布了新的文献求助10
8秒前
8秒前
8秒前
shi发布了新的文献求助10
9秒前
清脆飞机完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
13秒前
ukmy发布了新的文献求助10
14秒前
14秒前
自信书文发布了新的文献求助10
15秒前
hy完成签到 ,获得积分10
15秒前
ljw发布了新的文献求助10
18秒前
研友_Zeg3VL完成签到,获得积分10
18秒前
满意的尔蝶完成签到,获得积分10
19秒前
SciGPT应助与非采纳,获得10
20秒前
无花果应助vvvv采纳,获得10
20秒前
小蘑菇应助杏花饼采纳,获得10
20秒前
21秒前
qs完成签到,获得积分10
23秒前
李健应助en采纳,获得10
23秒前
脑洞疼应助自信书文采纳,获得10
23秒前
星辰大海应助满意的尔蝶采纳,获得10
24秒前
赘婿应助绿大暗采纳,获得30
24秒前
24秒前
李爱国应助ukmy采纳,获得10
24秒前
25秒前
lll发布了新的文献求助10
26秒前
26秒前
热心市民小红花应助名天采纳,获得50
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000