Structure similarity‐guided image binarization for automatic segmentation of epidermis surface microstructure images

人工智能 计算机科学 直方图 计算机视觉 预处理器 模式识别(心理学) 分割 相似性(几何) 特征(语言学) 图像(数学) 语言学 哲学
作者
Yaobin Zou,Bangjun Lei,Fei Dong,Guangfu Xu,Shuifa Sun,Peng Xia
出处
期刊:Journal of Microscopy [Wiley]
卷期号:266 (2): 153-165
标识
DOI:10.1111/jmi.12525
摘要

Summary Partitioning epidermis surface microstructure (ESM) images into skin ridge and skin furrow regions is an important preprocessing step before quantitative analyses on ESM images. Binarization segmentation is a potential technique for partitioning ESM images because of its computational simplicity and ease of implementation. However, even for some state‐of‐the‐art binarization methods, it remains a challenge to automatically segment ESM images, because the grey‐level histograms of ESM images have no obvious external features to guide automatic assessment of appropriate thresholds. Inspired by human visual perceptual functions of structural feature extraction and comparison, we propose a structure similarity‐guided image binarization method. The proposed method seeks for the binary image that best approximates the input ESM image in terms of structural features. The proposed method is validated by comparing it with two recently developed automatic binarization techniques as well as a manual binarization method on 20 synthetic noisy images and 30 ESM images. The experimental results show: (1) the proposed method possesses self‐adaption ability to cope with different images with same grey‐level histogram; (2) compared to two automatic binarization techniques, the proposed method significantly improves average accuracy in segmenting ESM images with an acceptable decrease in computational efficiency; (3) and the proposed method is applicable for segmenting practical EMS images. (Matlab code of the proposed method can be obtained by contacting with the corresponding author.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不贰关注了科研通微信公众号
1秒前
额mmmm发布了新的文献求助10
2秒前
周VV发布了新的文献求助10
3秒前
XQQDD发布了新的文献求助10
4秒前
4秒前
yy完成签到,获得积分10
5秒前
领导范儿应助林风采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
懒癌晚期发布了新的文献求助10
7秒前
qing晴发布了新的文献求助10
8秒前
烟花应助15359015265采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
vrellik应助XL采纳,获得10
11秒前
14秒前
邓超完成签到,获得积分10
17秒前
Smile23发布了新的文献求助10
17秒前
17秒前
19秒前
xxw完成签到,获得积分10
20秒前
景琦完成签到,获得积分20
20秒前
21秒前
NexusExplorer应助catherine采纳,获得10
22秒前
22秒前
22秒前
雪落完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
梦幻时空完成签到,获得积分10
23秒前
23秒前
小郭发布了新的文献求助10
23秒前
非洲散打地黄完成签到 ,获得积分10
23秒前
23秒前
revive完成签到,获得积分10
24秒前
24秒前
无花果应助景琦采纳,获得10
25秒前
嘎嘎嘎完成签到,获得积分10
26秒前
yummy发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923741
求助须知:如何正确求助?哪些是违规求助? 4194049
关于积分的说明 13027023
捐赠科研通 3965992
什么是DOI,文献DOI怎么找? 2173673
邀请新用户注册赠送积分活动 1191211
关于科研通互助平台的介绍 1100764