Structure similarity‐guided image binarization for automatic segmentation of epidermis surface microstructure images

人工智能 计算机科学 直方图 计算机视觉 预处理器 模式识别(心理学) 分割 相似性(几何) 特征(语言学) 图像(数学) 语言学 哲学
作者
Yaobin Zou,Bangjun Lei,Fei Dong,Guangfu Xu,Shuifa Sun,Peng Xia
出处
期刊:Journal of Microscopy [Wiley]
卷期号:266 (2): 153-165
标识
DOI:10.1111/jmi.12525
摘要

Summary Partitioning epidermis surface microstructure (ESM) images into skin ridge and skin furrow regions is an important preprocessing step before quantitative analyses on ESM images. Binarization segmentation is a potential technique for partitioning ESM images because of its computational simplicity and ease of implementation. However, even for some state‐of‐the‐art binarization methods, it remains a challenge to automatically segment ESM images, because the grey‐level histograms of ESM images have no obvious external features to guide automatic assessment of appropriate thresholds. Inspired by human visual perceptual functions of structural feature extraction and comparison, we propose a structure similarity‐guided image binarization method. The proposed method seeks for the binary image that best approximates the input ESM image in terms of structural features. The proposed method is validated by comparing it with two recently developed automatic binarization techniques as well as a manual binarization method on 20 synthetic noisy images and 30 ESM images. The experimental results show: (1) the proposed method possesses self‐adaption ability to cope with different images with same grey‐level histogram; (2) compared to two automatic binarization techniques, the proposed method significantly improves average accuracy in segmenting ESM images with an acceptable decrease in computational efficiency; (3) and the proposed method is applicable for segmenting practical EMS images. (Matlab code of the proposed method can be obtained by contacting with the corresponding author.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aria发布了新的文献求助10
1秒前
归尘应助韦一手采纳,获得10
1秒前
愤怒的勒发布了新的文献求助10
1秒前
归尘应助韦一手采纳,获得10
1秒前
归尘应助韦一手采纳,获得10
1秒前
归尘应助韦一手采纳,获得10
1秒前
归尘应助韦一手采纳,获得10
1秒前
归尘应助韦一手采纳,获得10
1秒前
脑洞疼应助阿星捌采纳,获得10
1秒前
zzww发布了新的文献求助10
1秒前
2秒前
过卿完成签到 ,获得积分10
2秒前
阿胡完成签到 ,获得积分10
2秒前
3秒前
亮仔完成签到,获得积分10
3秒前
Theprisoners完成签到,获得积分0
3秒前
ding应助遥不可及采纳,获得10
4秒前
4秒前
柠檬水完成签到,获得积分10
4秒前
4秒前
5秒前
生活的花完成签到,获得积分10
5秒前
5秒前
我我我发布了新的文献求助10
5秒前
6秒前
Magicer发布了新的文献求助10
6秒前
RenHP完成签到,获得积分10
6秒前
Wu发布了新的文献求助10
6秒前
马户的崛起完成签到,获得积分10
7秒前
科研通AI6应助章文荣采纳,获得10
7秒前
kkyy发布了新的文献求助10
7秒前
科研通AI6应助有趣的银采纳,获得10
7秒前
挥发的费洛蒙完成签到,获得积分10
8秒前
hhh完成签到,获得积分10
9秒前
Redback应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
大石头完成签到,获得积分10
10秒前
www完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研废物采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579766
关于积分的说明 14370418
捐赠科研通 4507955
什么是DOI,文献DOI怎么找? 2470343
邀请新用户注册赠送积分活动 1457229
关于科研通互助平台的介绍 1431172