聚吡咯
光热治疗
材料科学
纳米复合材料
偏苯三甲酸
纳米技术
纳米材料
化学工程
复合材料
聚合物
化学
分子
有机化学
聚合
工程类
作者
Xiangjun Chen,Manjie Zhang,Shengnan Li,Lu Li,Lingyu Zhang,Tingting Wang,Min Yu,Zhongcheng Mou,Chungang Wang
摘要
In our work, we report a facile approach to fabricate well-dispersed polypyrrole@metal-organic framework (PPy@MOF) core-shell nanocomposites (NCs) with a polypyrrole (PPy) core and an MIL-100(Fe) shell. The adsorbed Fe(iii) ions on the as-fabricated PPy surface were utilized as reactive sites for further growth of the MIL-100(Fe) in the presence of trimesic acid (H3btc). The resulting NCs exhibited strong absorption in the near infrared (NIR) region and possessed an excellent photothermal efficiency of ∼40% resulting from the PPy core. The MOF structure based on Fe(iii) carboxylate materials held great ability for storage/delivery of the hydrophilic anti-cancer drug, doxorubicin (DOX). The released DOX continuously increased due to the damage of the shell at low pH values. When the DOX-loaded PPy@MIL-100(Fe) NCs were exposed to NIR irradiation, owing to the heat produced by the NCs, the local temperature increased, resulting in a faster release of DOX from the MIL-100(Fe) shell. Furthermore, PPy@MIL-100(Fe) NCs were successfully employed for dual-mode magnetic resonance imaging (MRI)/photoacoustic imaging (PAI) and synergistic chemo-photothermal therapy of cancer cells. Therefore, our work could encourage further study in the construction of a multifunctional platform using different MOF nanomaterials for cancer theranostics.
科研通智能强力驱动
Strongly Powered by AbleSci AI