Efficient degradation of tetrabromobisphenol A by synergistic integration of Fe/Ni bimetallic catalysis and microbial acclimation

四溴双酚A 化学 过氧化氢 双金属片 催化作用 降级(电信) 羟基化 环境化学 亚硫酸盐 微生物联合体 微生物种群生物学 微生物 无机化学 有机化学 细菌 生物 阻燃剂 电信 遗传学 计算机科学
作者
Xingxing Peng,Zhangna Wang,Jingfei Huang,Barry R. Pittendrigh,Shengwei Liu,Xiaoshan Jia,Po Keung Wong
出处
期刊:Water Research [Elsevier]
卷期号:122: 471-480 被引量:53
标识
DOI:10.1016/j.watres.2017.06.019
摘要

This study provides a novel technology for the degradation of tetrabromobisphenol A (TBBPA) via an interaction of Fe redox and a shift of functional microbial community. TBBPA was degraded by integration of synthesized Fe-Ni bimetallic particles and enriched microbial consortium within an aqueous system. This cooperative integration yielded the best TBBPA-degrading capacity (100% removal after treatment for 2 h) and highest TOC-removing efficiency (94.5% removal after treatment for 96 h), as well as the lowest toxicity to Vibrio fischeri (almost 0% growth inhibition during reaction). The synergistic mechanism of integrated system was clarified based on systematical analyses of the degradation processes as well as the shifts in microbial community. Owing to the microbial metabolism and the Fenton-like process of leaked Fe2+, Fe3+ and Ni2+ from Fe-Ni bimetallic catalyst, reactive oxidative species (ROS), including superoxide (O2−), hydroxyl radicals (OH) and hydrogen peroxide (H2O2) were produced and evaluated by multiple techniques. Moreover, the quenching experiments indicated that OH was the major ROS leading to TBBPA degradation, rather than H2O2 or O2−. Based on the analysis of the 12 detected intermediates, three parallel pathways were proposed. It was clearly revealed that reductive and oxidative debromination, hydroxylation, and β-scission simultaneously occurred in the integrated system. Fe non-randomly accelerated the enrichment of TBBPA-degrading microbes (e.g. Pseudomonas sp. and Citrobacter sp., etc.). Above all, this novel technology has great promise for field-applications for remediation of TBBPA-contaminated field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chri驳回了puhu应助
刚刚
刚刚
思源应助夏叶采纳,获得10
1秒前
Eastonlyzhang完成签到,获得积分10
2秒前
2秒前
shelemi发布了新的文献求助10
3秒前
HCLonely举报聆听求助涉嫌违规
4秒前
pluto应助Eifuly采纳,获得30
4秒前
小于发布了新的文献求助10
4秒前
科研張应助酷酷珠采纳,获得20
7秒前
9秒前
123应助清雨丶赤羽采纳,获得10
10秒前
每天都很忙完成签到 ,获得积分10
11秒前
贪玩的元彤完成签到,获得积分10
11秒前
18秒前
20秒前
Jasper应助Octozhang采纳,获得50
21秒前
25秒前
onto完成签到,获得积分10
29秒前
30秒前
不吃脑花发布了新的文献求助10
31秒前
34秒前
华仔应助科研通管家采纳,获得30
34秒前
我是老大应助心灵美语兰采纳,获得10
34秒前
彭于晏应助科研通管家采纳,获得10
34秒前
研友_VZG7GZ应助科研通管家采纳,获得30
34秒前
34秒前
SciGPT应助科研通管家采纳,获得10
35秒前
火山羊发布了新的文献求助10
38秒前
39秒前
菜菜带带完成签到,获得积分10
40秒前
HaiFeng完成签到,获得积分10
40秒前
OeO完成签到 ,获得积分10
40秒前
41秒前
lu完成签到,获得积分10
42秒前
43秒前
43秒前
科研通AI2S应助邓焕然采纳,获得10
45秒前
45秒前
兔兔要睡觉完成签到 ,获得积分10
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945947
关于积分的说明 8527726
捐赠科研通 2621578
什么是DOI,文献DOI怎么找? 1433864
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637