Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

人工神经网络 计算机视觉 深度学习 图像(数学) 模式识别(心理学) 卷积神经网络
作者
Ramprasaath R. Selvaraju,Michael Cogswell,Abhishek Das,Ramakrishna Vedantam,Devi Parikh,Dhruv Batra
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:202
标识
DOI:10.1007/s11263-019-01228-7
摘要

We propose a technique for producing for decisions from a large class of CNN-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept, flowing into the final convolutional layer to produce a coarse localization map highlighting important regions in the image for predicting the concept. Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers, (2) CNNs used for structured outputs, (3) CNNs used in tasks with multimodal inputs or reinforcement learning, without any architectural changes or re-training. We combine Grad-CAM with fine-grained visualizations to create a high-resolution class-discriminative visualization and apply it to off-the-shelf image classification, captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into their failure modes, (b) are robust to adversarial images, (c) outperform previous methods on localization, (d) are more faithful to the underlying model and (e) help achieve generalization by identifying dataset bias. For captioning and VQA, we show that even non-attention based models can localize inputs. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM helps users establish appropriate trust in predictions from models and show that Grad-CAM helps untrained users successfully discern a 'stronger' nodel from a 'weaker' one even when both make identical predictions. Our code is available at this https URL, along with a demo at this http URL, and a video at this http URL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
华仔应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Cheng完成签到 ,获得积分10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
暮霭沉沉应助科研通管家采纳,获得20
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
努力学习的阿文完成签到,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
zz0429完成签到 ,获得积分10
4秒前
乐乐应助adgfasdvz采纳,获得10
4秒前
4秒前
STNZEN完成签到,获得积分10
5秒前
5秒前
烟花应助嗯呐采纳,获得10
5秒前
hucchongzi应助bofu采纳,获得30
7秒前
无私诗云发布了新的文献求助10
8秒前
8秒前
9秒前
南山无玫落完成签到 ,获得积分10
9秒前
9秒前
zhang完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
12秒前
无影随行完成签到,获得积分10
13秒前
yzx发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160703
求助须知:如何正确求助?哪些是违规求助? 2811860
关于积分的说明 7893601
捐赠科研通 2470679
什么是DOI,文献DOI怎么找? 1315754
科研通“疑难数据库(出版商)”最低求助积分说明 630993
版权声明 602053