化学
二乙烯基苯
吸附
镧系元素
选择性
苯乙烯
配体(生物化学)
选择性吸附
无机化学
共聚物
单体
盐酸
分子印迹
聚合物
核化学
高分子化学
离子
有机化学
催化作用
受体
生物化学
作者
Tomohito Ide,Akiko Suzuki,Toshihiro Imada
标识
DOI:10.1080/01496395.2016.1230630
摘要
Lanthanide selective adsorbent with chelidonic acid monoamide group was synthesized based on the ion-imprint method and its adsorption character was investigated. A polymerizable ligand 3 with chelidonic acid group was obtained by condensation of chelidonic acid and 4-aminostyrene. A Nd-complex monomer 7 was synthesized from the obtained ligand 3 and Nd(NO3)3. Copolymerization of the Nd-complex monomer, styrene and divinylbenzene afforded Nd-containing polymer 8. To obtain Nd-imprinted polymer 9, Nd ion was removed by hydrochloric acid. A non-imprinted polymer 6 composed by 3, styrene and divinylbenzene was also synthesized. Elemental analysis revealed that the content of chelidonic acid monoamide ligand in the 6 and 9 is 1.70 and 1.56 mmol·g−1, respectively. BET method indicated that 6 and 9 has specific surface area of 14.7 and 1.51 m2·g−1, respectively. Nd adsorption experiments revealed 9 exhibits imprinting factor (IF) 4.3 at initial concentration 0.4 mmol-Nd/L, despite 9 has 0.92-fold of ligands and 0.1-fold of specific surface area of 6. Mixed ion solution including Nd, Dy, Cu, Zn, and Co was used as a model solution for an adsorption experiment. 9 exhibits high lanthanide selectivity in a range of pH of 3.0–7.0 and a maximum adsorption amount at pH 3.75, despite 6 shows the maximum at pH 5.0. Density functional theory (DFT) calculation of a model system revealed that the ion-imprint effect and inhibition effect is cause of large adsorption amount of 9.
科研通智能强力驱动
Strongly Powered by AbleSci AI