Integrating occurrence data and expert maps for improved species range predictions

计算机科学 航程(航空) 数据挖掘 环境生态位模型 比例(比率) 参数化复杂度 物种分布 机器学习 最大熵原理 专家启发 人工智能 数据科学 生态学 生态位 地理 地图学 栖息地 数学 统计 材料科学 复合材料 生物 算法
作者
Cory Merow,Adam M. Wilson,Walter Jetz
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:26 (2): 243-258 被引量:99
标识
DOI:10.1111/geb.12539
摘要

Abstract Aim Knowledge of species geographical distributions is critical for many ecological and evolutionary questions and underpins effective conservation decision‐making, yet it is usually limited in spatial resolution or reliability. Over large spatial extents, range predictions are typically derived from expert knowledge or, increasingly, species distribution models based on individual occurrence records. Expert maps are useful at coarse resolution, where they are suitable for delineating unoccupied regions. In contrast, point records typically provide finer‐scale occurrence information that can be characterized for its environmental association, but usually suffers from observer biases and does not representatively or fully address the geographical or environmental range occupied by a species. Innovation We develop a new modelling methodology to combine the complementary informative attributes of both data types to improve fine‐scale, large‐extent predictions. We use expert delineations to constrain predictions of a species distribution model parameterized with incidental point occurrence records. We introduce a maximum entropy approach for combining the two data types and generalize it to Poisson point process models. We illustrate critical decision making during model construction using two detailed case studies and illustrate features more generally with applications to species with vastly different range and data attributes. Our methods are illustrated in the Supporting Information and with a new R package, bossMaps, that integrates with existing generalized linear modelling and Maxent software. Main conclusions Our modelling strategy flexibly accommodates expert maps with different levels of bias and precision. The approach can also be useful with other coarse sources of spatially explicit information, including habitat associations, elevational bands or vegetation types. The flexible nature of this methodological innovation can support improved characterization of species distributions for a variety of applications and is being implemented as a standard element underpinning integrative species distribution predictions in the Map of Life ( https://mol.org/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快快快发布了新的文献求助10
刚刚
1秒前
念辞发布了新的文献求助10
1秒前
浔初先生完成签到,获得积分10
1秒前
1秒前
2秒前
舒心聪展完成签到,获得积分10
2秒前
2秒前
人文发布了新的文献求助10
3秒前
忐忑的修杰完成签到,获得积分10
3秒前
DIG发布了新的文献求助10
4秒前
4秒前
搞怪莫茗发布了新的文献求助10
5秒前
zx9290完成签到,获得积分10
5秒前
Xiangguang发布了新的文献求助10
5秒前
6秒前
6秒前
传统的卿发布了新的文献求助10
6秒前
橘子发布了新的文献求助10
7秒前
7秒前
8秒前
Hello应助我又不乱来采纳,获得10
8秒前
370086320完成签到,获得积分10
8秒前
jicm发布了新的文献求助10
8秒前
顾矜应助西子阳采纳,获得10
10秒前
无花果应助花成花采纳,获得10
13秒前
13秒前
夏花发布了新的文献求助10
13秒前
李爱国应助MOMO采纳,获得10
14秒前
搜集达人应助健壮的诗槐采纳,获得10
14秒前
15秒前
ccc关注了科研通微信公众号
15秒前
快乐游轮完成签到 ,获得积分10
16秒前
16秒前
16秒前
隐形曼青应助练习者采纳,获得10
16秒前
VDC应助高高的不悔采纳,获得30
19秒前
20秒前
博雅雅雅雅雅完成签到,获得积分10
20秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748536
求助须知:如何正确求助?哪些是违规求助? 3291591
关于积分的说明 10073642
捐赠科研通 3007395
什么是DOI,文献DOI怎么找? 1651600
邀请新用户注册赠送积分活动 786523
科研通“疑难数据库(出版商)”最低求助积分说明 751765