Strong exciton–photon coupling in an organic semiconductor microcavity

激子 光子 极化子 联轴节(管道) 半导体 光电子学 量子阱 有机半导体 材料科学 光学微腔 光致发光 比克西顿 混合(物理) 物理 凝聚态物理 光学 量子力学 激光器 冶金
作者
David G. Lidzey,Donal D. C. Bradley,M. S. Skolnick,Tersilla Virgili,Sara Walker,D. M. Whittaker
出处
期刊:Nature [Nature Portfolio]
卷期号:395 (6697): 53-55 被引量:841
标识
DOI:10.1038/25692
摘要

The modification and control of exciton–photon interactions in semiconductors is of both fundamental1,2,3,4 and practical interest, being of direct relevance to the design of improved light-emitting diodes, photodetectors and lasers5,6,7. In a semiconductor microcavity, the confined electromagnetic field modifies the optical transitions of the material. Two distinct types of interaction are possible: weak and strong coupling1,2,3,4. In the former perturbative regime, the spectral and spatial distribution of the emission is modified but exciton dynamics are little altered. In the latter case, however, mixing of exciton and photon states occurs leading to strongly modified dynamics. Both types of effect have been observed in planar microcavity structures in inorganic semiconductor quantum wells and bulk layers1,2,3,4,5,6,7,8. But organic semiconductor microcavities have been studied only in the weak-coupling regime9,10,11,12,13,14,15,16,17,18. Here we report an organic semiconductor microcavity that operates in the strong-coupling regime. We see characteristic mixing of the exciton and photon modes (anti-crossing), and a room-temperature vacuum Rabi splitting (an indicator of interaction strength) that is an order of magnitude larger than the previously reported highest values for inorganic semiconductors. Our results may lead to new structures and device concepts incorporating hybrid states of organic and inorganic excitons19, and suggest that polariton lasing20,21,22 may be possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
H2O完成签到,获得积分10
1秒前
梓然完成签到,获得积分10
1秒前
姜磊发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
Ava应助时尚俊驰采纳,获得10
3秒前
余南发布了新的文献求助10
4秒前
5秒前
hanleiharry1发布了新的文献求助10
5秒前
段一帆发布了新的文献求助10
5秒前
充电宝应助mx采纳,获得10
5秒前
杰2580发布了新的文献求助10
6秒前
puff驳回了Ava应助
7秒前
8秒前
8秒前
阿牛哥发布了新的文献求助10
9秒前
香蕉觅云应助东晓采纳,获得10
10秒前
10秒前
姜磊完成签到,获得积分20
11秒前
11秒前
xxddw发布了新的文献求助10
12秒前
12秒前
谢海洋完成签到,获得积分10
13秒前
14秒前
loski发布了新的文献求助10
15秒前
16秒前
xueyu发布了新的文献求助10
17秒前
18秒前
lincy完成签到,获得积分10
19秒前
fqk完成签到,获得积分10
19秒前
20秒前
hanleiharry1发布了新的文献求助10
20秒前
20秒前
22秒前
乐乐应助WN采纳,获得10
24秒前
辛勤的刺猬完成签到 ,获得积分10
28秒前
神奇宝贝发布了新的文献求助10
28秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174