平滑的
维纳滤波器
高斯模糊
高斯滤波器
滤波器(信号处理)
核(代数)
高斯分布
核自适应滤波器
人工智能
计算机科学
自适应滤波器
噪音(视频)
高斯噪声
高斯函数
边缘保持平滑
计算机视觉
模式识别(心理学)
数学
图像(数学)
算法
双边滤波器
图像处理
滤波器设计
图像复原
物理
组合数学
量子力学
作者
M. Bartés-Serrallonga,Josep Maria Serra‐Grabulosa,Ana Adán,Carles Falcón,Núria Bargalló,Jordi Solé‐Casals
出处
期刊:Studies in computational intelligence
日期:2015-01-01
卷期号:: 321-332
被引量:4
标识
DOI:10.1007/978-3-319-11271-8_21
摘要
The analysis of fMRI allows mapping the brain and identifying brain regions activated by a particular task. Prior to the analysis, several steps are carried out to prepare the data. One of these is the spatial smoothing whose aim is to eliminate the noise which can cause errors in the analysis. The most common method to perform this is by using a Gaussian filter, in which the extent of smoothing is assumed to be equal across the image. As a result some regions may be under-smoothed, while others may be over-smoothed. Thus, we suggest smoothing the images adaptively using a Wiener filter which allows varying the extent of smoothing according to the changing characteristics of the image. Therefore, we compared the effects of the smoothing with a wiener filter and with a Gaussian Kernel. In general, the results obtained with the adaptive filter were better than those obtained with the Gaussian filter.
科研通智能强力驱动
Strongly Powered by AbleSci AI