Analog circuit fault diagnosis based UCISVM

断层(地质) 模拟电子学 故障检测与隔离 电子线路 故障覆盖率 陷入故障 人工神经网络 算法
作者
Aihua Zhang,Chen Chen,Baoshan Jiang
出处
期刊:Neurocomputing [Elsevier]
卷期号:173: 1752-1760 被引量:18
标识
DOI:10.1016/j.neucom.2015.09.050
摘要

Focusing on the issue of analog circuit performance online evaluation, the arithmetic speed and the evaluation reliability should be considered. Moreover, the data collected from industrial field has a lots of undesirable features, such as nonlinear feature, time varying feature and contained faults value. All of them should be taken into account. Therefore, two online evaluation strategies are proposed for an analog circuit performance evaluation. First, an analog circuit performance evaluation strategy based on improved support vector machine (ISVM) is presented for the purpose of deducing the training data number largely. This method can deduce the data training set largely as little as 10% of the initial training set and tackle the computational complexity. However, the ISVM is established on the basis of random selection of training set, and this blindness of data training set random selection would bring great impact on the performance of evaluation accuracy. Based on this, another analog circuit fault diagnosis strategy based on unsupervised clustering ISVM (UCISVM) is proposed. This method not only maintains the merit of small data set, but also overcomes the defect of training set selection randomly. The strong characteristic of the support vectors are the only concerns during the diagnosis processes. Corresponding, the unknown fault diagnosis also can be recognized via the UCISVM. The experiment takes a typical analog circuit as diagnosis object. In order to prove the effectiveness of the proposed two methods in this paper, the traditional fault diagnosis method based on standard support vector machine (SVM) is employed also. The diagnosis speed and accuracy are all proved via numerical simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助风云采纳,获得10
刚刚
焱焱发布了新的文献求助10
1秒前
零渊发布了新的文献求助10
1秒前
2秒前
小王发布了新的文献求助10
2秒前
上古完成签到,获得积分20
3秒前
小杨爱吃羊完成签到 ,获得积分10
3秒前
3秒前
沐阳d完成签到,获得积分10
3秒前
flb123完成签到,获得积分10
4秒前
笨笨的念桃完成签到,获得积分10
4秒前
wp0715完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
科研通AI2S应助淡淡冰淇淋采纳,获得10
6秒前
顾矜应助淡淡冰淇淋采纳,获得10
6秒前
6秒前
格子完成签到,获得积分10
6秒前
沐阳d发布了新的文献求助10
7秒前
annie发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
yty完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
多情捕发布了新的文献求助20
10秒前
YOOO发布了新的文献求助20
10秒前
小王发布了新的文献求助10
11秒前
应樱发布了新的文献求助10
11秒前
liutaotao发布了新的文献求助10
12秒前
周斌发布了新的文献求助10
12秒前
慕容千亦发布了新的文献求助10
12秒前
13秒前
xiaogang127完成签到 ,获得积分10
13秒前
超级的甜瓜完成签到,获得积分10
13秒前
凹凸蔓发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156450
求助须知:如何正确求助?哪些是违规求助? 2807921
关于积分的说明 7875266
捐赠科研通 2466226
什么是DOI,文献DOI怎么找? 1312727
科研通“疑难数据库(出版商)”最低求助积分说明 630255
版权声明 601919