守恒定律
间断伽辽金法
多边形网格
应用数学
欧拉方程
数学
双曲型偏微分方程
限制器
欧拉公式
简单(哲学)
数学分析
偏微分方程
计算机科学
有限元法
物理
几何学
热力学
认识论
电信
哲学
作者
Guosheng Fu,Chi‐Wang Shu
标识
DOI:10.1016/j.jcp.2017.06.046
摘要
We introduce a new troubled-cell indicator for the discontinuous Galerkin (DG) methods for solving hyperbolic conservation laws. This indicator can be defined on unstructured meshes for high order DG methods and depends only on data from the target cell and its immediate neighbors. It is able to identify shocks without PDE sensitive parameters to tune. Extensive one- and two-dimensional simulations on the hyperbolic systems of Euler equations indicate the good performance of this new troubled-cell indicator coupled with a simple minmod-type TVD limiter for the Runge–Kutta DG (RKDG) methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI