Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning

对抗制 机器学习 人工智能 计算机科学 对抗性机器学习 深度学习 人工神经网络 领域(数学) 面部识别系统 恶意软件 计算机安全 特征提取 数学 纯数学
作者
Battista Biggio,Fabio Roli
出处
期刊:Cornell University - arXiv 卷期号:84: 2154-2156 被引量:571
摘要

Deep neural networks and machine-learning algorithms are pervasively used in several applications, ranging from computer vision to computer security. In most of these applications, the learning algorithm has to face intelligent and adaptive attackers who can carefully manipulate data to purposely subvert the learning process. As these algorithms have not been originally designed under such premises, they have been shown to be vulnerable to well-crafted, sophisticated attacks, including training-time poisoning and test-time evasion attacks (also known as adversarial examples). The problem of countering these threats and learning secure classifiers in adversarial settings has thus become the subject of an emerging, relevant research field known as adversarial machine learning. The purposes of this tutorial are: (a) to introduce the fundamentals of adversarial machine learning to the security community; (b) to illustrate the design cycle of a learning-based pattern recognition system for adversarial tasks; (c) to present novel techniques that have been recently proposed to assess performance of pattern classifiers and deep learning algorithms under attack, evaluate their vulnerabilities, and implement defense strategies that make learning algorithms more robust to attacks; and (d) to show some applications of adversarial machine learning to pattern recognition tasks like object recognition in images, biometric identity recognition, spam and malware detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小沐发布了新的文献求助10
1秒前
十公里发布了新的文献求助30
1秒前
1秒前
1秒前
德彪发布了新的文献求助10
2秒前
2秒前
刻苦惜萍发布了新的文献求助10
2秒前
脑洞疼应助艾科研采纳,获得10
3秒前
Leslie完成签到,获得积分20
4秒前
非鱼鱼完成签到 ,获得积分10
5秒前
devil发布了新的文献求助10
5秒前
blueblue完成签到,获得积分10
6秒前
6秒前
张三说刑法关注了科研通微信公众号
6秒前
7秒前
kk完成签到,获得积分20
7秒前
7秒前
不配.应助lily采纳,获得10
7秒前
21GolDiamond完成签到,获得积分10
7秒前
仁爱的乐枫完成签到,获得积分20
8秒前
8秒前
大龙哥886应助活力的白猫采纳,获得30
8秒前
英姑应助活力的白猫采纳,获得10
8秒前
9秒前
求文献发布了新的文献求助10
10秒前
10秒前
10秒前
思源应助devil采纳,获得10
11秒前
岂识浊醪妙理应助小恰采纳,获得10
11秒前
舒心白山发布了新的文献求助10
11秒前
12秒前
科研小废物完成签到,获得积分20
12秒前
12秒前
周茉发布了新的文献求助10
13秒前
13秒前
13秒前
Mike发布了新的文献求助10
14秒前
dddddd完成签到,获得积分10
15秒前
羿_liu应助科研通管家采纳,获得20
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153139
求助须知:如何正确求助?哪些是违规求助? 2804306
关于积分的说明 7858717
捐赠科研通 2462115
什么是DOI,文献DOI怎么找? 1310701
科研通“疑难数据库(出版商)”最低求助积分说明 629333
版权声明 601794