清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Tree Classification in Complex Forest Point Clouds Based on Deep Learning

点云 树(集合论) 计算机科学 人工智能 模式识别(心理学) 深度学习 特征提取 点(几何) 体素 激光扫描 特征(语言学) 树形结构 上下文图像分类 遥感 二叉树 数学 图像(数学) 地理 算法 激光器 数学分析 语言学 哲学 物理 几何学 光学
作者
Xinhuai Zou,Ming Cheng,Cheng Wang,Yan Xia,Jonathan Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:14 (12): 2360-2364 被引量:105
标识
DOI:10.1109/lgrs.2017.2764938
摘要

Recently, the classification of tree species using 3-D point clouds has drawn wide attention in surveys and forestry investigations. This letter proposes a new voxel-based deep learning method to classify tree species in 3-D point clouds collected from complex forest scenes. The proposed method includes three steps: 1) individual tree extraction based on the density of the point clouds; 2) low-level feature representation through voxel-based rasterization; and 3) classification of tree species by a deep learning model. Two data sets of 3-D forest point clouds acquired by terrestrial laser scanning systems are used to evaluate the proposed method. The method achieves an average classification accuracy of 93.1% and 95.6% on the two data sets. Furthermore, in comparative experiments, the proposed method exhibits performance superior to that of the other 3-D tree species classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长举报墨尘求助涉嫌违规
2秒前
lei029完成签到,获得积分10
19秒前
23秒前
lei029发布了新的文献求助10
23秒前
31秒前
馆长举报空白求助涉嫌违规
35秒前
量子星尘发布了新的文献求助10
37秒前
woxinyouyou完成签到,获得积分0
1分钟前
馆长举报wy求助涉嫌违规
1分钟前
馆长举报zxk求助涉嫌违规
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
馆长举报violin求助涉嫌违规
1分钟前
2分钟前
馆长举报KK求助涉嫌违规
2分钟前
林夕完成签到 ,获得积分10
2分钟前
tutu完成签到,获得积分10
2分钟前
hunajx完成签到,获得积分10
2分钟前
馆长举报阿良求助涉嫌违规
2分钟前
馆长举报马也君求助涉嫌违规
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
馆长举报无语的玉米求助涉嫌违规
3分钟前
快乐学习每一天完成签到 ,获得积分10
3分钟前
菠萝包完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
gege完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
馆长举报英吉利25求助涉嫌违规
6分钟前
馆长举报四月求助涉嫌违规
7分钟前
7分钟前
7分钟前
顺利的雁梅完成签到 ,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
8分钟前
8分钟前
两个榴莲完成签到,获得积分0
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596449
求助须知:如何正确求助?哪些是违规求助? 4008332
关于积分的说明 12409129
捐赠科研通 3687356
什么是DOI,文献DOI怎么找? 2032344
邀请新用户注册赠送积分活动 1065591
科研通“疑难数据库(出版商)”最低求助积分说明 950877