A toolbox for animal call recognition

计算机科学 工具箱 多样性(控制论) 数据科学 原始数据 公民科学 万维网 人机交互 人工智能 植物 生物 程序设计语言
作者
Michael Towsey,Birgit Planitz,Alfredo Nantes,Jason Wimmer,Paul Roe
出处
期刊:Bioacoustics-the International Journal of Animal Sound and Its Recording [Taylor & Francis]
卷期号:21 (2): 107-125 被引量:103
标识
DOI:10.1080/09524622.2011.648753
摘要

Abstract Monitoring the natural environment is increasingly important as habit degradation and climate change reduce the world's biodiversity. We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales. One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal's proximity to the microphone. Second, initial experimentation suggested that no single recognizer could deal with the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems. Keywords: environmental acoustic analysisautomated animal call recognitionsensor networks Acknowledgement The Microsoft QUT eResearch Centre is funded by the Queensland State Government under a Smart State Innovation Fund (National and International Research Alliances Program), Microsoft Research and QUT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
3秒前
牛马人生完成签到,获得积分10
4秒前
挚友完成签到 ,获得积分10
4秒前
4秒前
轨道交通振动与噪声小白完成签到,获得积分10
5秒前
5秒前
Akim应助周爱李采纳,获得10
5秒前
陌路发布了新的文献求助10
6秒前
田田田完成签到,获得积分10
6秒前
星辰大海应助JuJu采纳,获得10
6秒前
小杨发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
小马甲应助nulll采纳,获得10
6秒前
可爱的函函应助123456采纳,获得10
7秒前
shunlibiye发布了新的文献求助10
7秒前
8秒前
8秒前
研友_8oY3rn完成签到,获得积分10
9秒前
美好乐松应助负责的方盒采纳,获得10
9秒前
丘比特应助zyq采纳,获得10
11秒前
快乐人杰发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
dsslc发布了新的文献求助10
13秒前
cc完成签到,获得积分20
15秒前
大模型应助zzh采纳,获得30
15秒前
小李子发布了新的文献求助10
15秒前
FashionBoy应助零碎的岛屿采纳,获得10
15秒前
李健的小迷弟应助宁语采纳,获得10
15秒前
16秒前
16秒前
聪明小于完成签到,获得积分10
17秒前
烟花应助炙热的平灵采纳,获得10
17秒前
美狗王发布了新的文献求助10
17秒前
朴实的西装完成签到,获得积分10
18秒前
shunlibiye完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836