细胞生物学
生物
PI3K/AKT/mTOR通路
信号转导
蛋白激酶B
生物化学
磷酸化
作者
Duan Ni,Dingyu Liu,Jian Zhang,Shaoyong Lu
摘要
Calmodulin (CaM) and phosphatidylinositide-3 kinase (PI3Kα) are well known for their multiple roles in a series of intracellular signaling pathways and in the progression of several human cancers. Crosstalk between CaM and PI3Kα has been an area of intensive research. Recent experiments have shown that in adenocarcinoma, K-Ras4B is involved in the CaM-PI3Kα crosstalk. Based on experimental results, we have recently put forward a hypothesis that the coordination of CaM and PI3Kα with K-Ras4B forms a CaM-PI3Kα-K-Ras4B ternary complex, which leads to the formation of pancreatic ductal adenocarcinoma. However, the mechanism for the CaM-PI3Kα crosstalk is unresolved. Based on molecular modeling and molecular dynamics simulations, here we explored the potential interactions between CaM and the c/nSH2 domains of p85α subunit of PI3Kα. We demonstrated that CaM can interact with the c/nSH2 domains and the interaction details were unraveled. Moreover, the possible modes for the CaM-cSH2 and CaM-nSH2 interactions were uncovered and we used them to construct a complete CaM-PI3Kα complex model. The structural model of CaM-PI3Kα interaction not only offers a support for our previous ternary complex hypothesis, but also is useful for drug design targeted at CaM-PI3Kα protein-protein interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI