亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Visually and Phonologically Similar Characters in Incorrect Chinese Words

汉字 计算机科学 相似性(几何) 性格(数学) 复制(统计) 人工智能 秩(图论) 自然语言处理 情报检索 数学 图像(数学) 统计 几何学 组合数学
作者
C.-L. Liu,Min-Hua Lai,Kan-Wen Tien,Yi‐Hsuan Chuang,Shih-Hung Wu,C.-Y. Lee
出处
期刊:ACM Transactions on Asian Language Information Processing [Association for Computing Machinery]
卷期号:10 (2): 1-39 被引量:64
标识
DOI:10.1145/1967293.1967297
摘要

Information about students’ mistakes opens a window to an understanding of their learning processes, and helps us design effective course work to help students avoid replication of the same errors. Learning from mistakes is important not just in human learning activities; it is also a crucial ingredient in techniques for the developments of student models. In this article, we report findings of our study on 4,100 erroneous Chinese words. Seventy-six percent of these errors were related to the phonological similarity between the correct and the incorrect characters, 46% were due to visual similarity, and 29% involved both factors. We propose a computing algorithm that aims at replication of incorrect Chinese words. The algorithm extends the principles of decomposing Chinese characters with the Cangjie codes to judge the visual similarity between Chinese characters. The algorithm also employs empirical rules to determine the degree of similarity between Chinese phonemes. To show its effectiveness, we ran the algorithm to select and rank a list of about 100 candidate characters, from more than 5,100 characters, for the incorrectly written character in each of the 4,100 errors. We inspected whether the incorrect character was indeed included in the candidate list and analyzed whether the incorrect character was ranked at the top of the candidate list. Experimental results show that our algorithm captured 97% of incorrect characters for the 4,100 errors, when the average length of the candidate lists was 104. Further analyses showed that the incorrect characters ranked among the top 10 candidates in 89% of the phonologically similar errors and in 80% of the visually similar errors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nazhang发布了新的文献求助10
1秒前
yuanyuanyang完成签到,获得积分10
2秒前
ljh024完成签到,获得积分10
4秒前
兜兜发布了新的文献求助10
6秒前
美丽的冰枫完成签到,获得积分10
6秒前
8秒前
浮游应助ww采纳,获得10
10秒前
义气的断秋完成签到,获得积分10
12秒前
东京今夜下雪关注了科研通微信公众号
21秒前
殷楷霖发布了新的文献求助10
24秒前
29秒前
34秒前
34秒前
35秒前
Qing发布了新的文献求助10
37秒前
38秒前
39秒前
科目三应助倩倩采纳,获得10
39秒前
殷楷霖发布了新的文献求助100
41秒前
东京今夜下雪完成签到,获得积分10
41秒前
青柠发布了新的文献求助10
42秒前
47秒前
情怀应助青柠采纳,获得10
52秒前
倩倩发布了新的文献求助10
52秒前
星辰大海应助Qing采纳,获得10
55秒前
浮游应助墨绝采纳,获得10
58秒前
浮游应助墨绝采纳,获得10
58秒前
浮游应助墨绝采纳,获得10
58秒前
浮游应助墨绝采纳,获得10
58秒前
浮游应助墨绝采纳,获得10
58秒前
58秒前
Ava应助燕麦大王采纳,获得10
1分钟前
1分钟前
1分钟前
PePsi完成签到 ,获得积分10
1分钟前
可爱的函函应助Monnine采纳,获得10
1分钟前
phd发布了新的文献求助10
1分钟前
噢斯帕斯基完成签到,获得积分20
1分钟前
JamesPei应助hhh采纳,获得10
1分钟前
QianYang发布了新的文献求助10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644412
求助须知:如何正确求助?哪些是违规求助? 4764051
关于积分的说明 15025013
捐赠科研通 4802816
什么是DOI,文献DOI怎么找? 2567616
邀请新用户注册赠送积分活动 1525332
关于科研通互助平台的介绍 1484790