亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Visually and Phonologically Similar Characters in Incorrect Chinese Words

汉字 计算机科学 相似性(几何) 性格(数学) 复制(统计) 人工智能 秩(图论) 自然语言处理 情报检索 数学 图像(数学) 统计 几何学 组合数学
作者
C.-L. Liu,Min-Hua Lai,Kan-Wen Tien,Yi‐Hsuan Chuang,Shih-Hung Wu,C.-Y. Lee
出处
期刊:ACM Transactions on Asian Language Information Processing [Association for Computing Machinery]
卷期号:10 (2): 1-39 被引量:64
标识
DOI:10.1145/1967293.1967297
摘要

Information about students’ mistakes opens a window to an understanding of their learning processes, and helps us design effective course work to help students avoid replication of the same errors. Learning from mistakes is important not just in human learning activities; it is also a crucial ingredient in techniques for the developments of student models. In this article, we report findings of our study on 4,100 erroneous Chinese words. Seventy-six percent of these errors were related to the phonological similarity between the correct and the incorrect characters, 46% were due to visual similarity, and 29% involved both factors. We propose a computing algorithm that aims at replication of incorrect Chinese words. The algorithm extends the principles of decomposing Chinese characters with the Cangjie codes to judge the visual similarity between Chinese characters. The algorithm also employs empirical rules to determine the degree of similarity between Chinese phonemes. To show its effectiveness, we ran the algorithm to select and rank a list of about 100 candidate characters, from more than 5,100 characters, for the incorrectly written character in each of the 4,100 errors. We inspected whether the incorrect character was indeed included in the candidate list and analyzed whether the incorrect character was ranked at the top of the candidate list. Experimental results show that our algorithm captured 97% of incorrect characters for the 4,100 errors, when the average length of the candidate lists was 104. Further analyses showed that the incorrect characters ranked among the top 10 candidates in 89% of the phonologically similar errors and in 80% of the visually similar errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
4秒前
123发布了新的文献求助10
7秒前
杨怂怂完成签到 ,获得积分10
19秒前
执着南琴发布了新的文献求助10
22秒前
24秒前
27秒前
35秒前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
929关闭了929文献求助
2分钟前
2分钟前
卑微学术人完成签到 ,获得积分10
3分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
李东东完成签到 ,获得积分10
5分钟前
喜悦幻灵完成签到,获得积分10
5分钟前
欧皇发布了新的文献求助10
6分钟前
朱文韬发布了新的文献求助10
7分钟前
朱文韬发布了新的文献求助10
7分钟前
nano完成签到 ,获得积分10
7分钟前
朱文韬发布了新的文献求助10
7分钟前
朱文韬发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
朱文韬发布了新的文献求助10
8分钟前
朱文韬完成签到,获得积分10
8分钟前
929完成签到,获得积分10
8分钟前
929发布了新的文献求助10
9分钟前
胖哥发布了新的文献求助10
9分钟前
Aaaaa发布了新的文献求助10
9分钟前
和气生财君完成签到 ,获得积分10
9分钟前
ZXneuro完成签到,获得积分10
9分钟前
香蕉觅云应助科研通管家采纳,获得10
10分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965713
求助须知:如何正确求助?哪些是违规求助? 3510941
关于积分的说明 11155657
捐赠科研通 3245401
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214