聚乙二醇化
乙二醇
化学
PEG比率
高分子化学
聚乙二醇
核化学
发光
有机化学
材料科学
光电子学
财务
经济
作者
Steve Po‐Yam Li,Huawei Liu,Kenneth Yin Zhang,Kenneth Kam‐Wing Lo
标识
DOI:10.1002/chem.201000474
摘要
We report the synthesis, characterization, and photophysical properties of a new class of luminescent cyclometalated iridium(III) polypyridine poly(ethylene glycol) (PEG) complexes [Ir(N--C)(2)(N--N)](PF(6)) (HN--C=Hppy (2-phenylpyridine), N--N=bpy-CONH-PEG1 (bpy=2,2'-bipyridine; 1a), bpy-CONH-PEG3 (1b); HN--C=Hpq (2-phenylquinoline), N--N=bpy-CONH-PEG1 (2a), bpy-CONH-PEG3 (2b); HN--C=Hpba (4-(2-pyridyl)benzaldehyde), N--N=bpy-CONH-PEG1 (3)) and their PEG-free counterparts (N--N=bpy-CONH-Et, HN--C=Hppy (1c); HN--C=Hpq (2c)). The cytotoxicity and cellular uptake of these complexes have been investigated by the MTT assay, ICPMS, laser-scanning confocal microscopy, and flow cytometry. The results showed that the complexes supported by the water-soluble PEG can act as biological probes and labels with considerably reduced cytotoxicity. Because the aldehyde groups of complex 3 are reactive toward primary amines, the complex has been utilized as the first luminescent PEGylation reagent. Bovine serum albumin (BSA) and poly(ethyleneimine) (PEI) have been PEGylated with this complex, and the resulting conjugates have been isolated, purified, and their photophysical properties studied. The DNA-binding and gene-delivery properties of the luminescent PEI conjugate 3-PEI have also been investigated.
科研通智能强力驱动
Strongly Powered by AbleSci AI