重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Extraction of physically fatigue feature in exercise using electromyography, electroencephalography and electrocardiography

脑电图 肌电图 心电图 特征提取 计算机科学 模式识别(心理学) 人工智能 心脏病学 物理医学与康复 医学 心理学 神经科学
作者
Szu‐Yu Lin,Chih‐I Hung,Hsin-I Wang,Yu‐Te Wu,Po-Shan Wang
标识
DOI:10.1109/icnc.2015.7378050
摘要

In this study, we employed Morlet wavelet, sample entropy, and fractal dimension on EEG and EMG signal to extract the feature of physical fatigue in the exercise. The result may be helpful for rehabilitation in effectiveness evaluation. Twenty healthy subjects participated in cycling exercise, and their physiological signals, including EEG, EMG, and ECG were recorded. In addition, we recorded subjects' feeling of fatigue since each subject has different physical strength and tolerance of non-stopping exercise. Signals in different stages, namely, resting, early, middle and late stages of exercising, were analyzed. ECG signal was used to categorize subjects into two groups, namely, moderate fatigue and severe fatigue. In EEG results, the averaged power, sample entropy, and fractal dimension of signals indicated that resting stages before and after the exercise were distinct from exercising stage. In severe fatigue, the averaged power within each frequency band of EEG increased with the duration of exercise whereas the power ratio, denoted by (theta+ alpha)/ beta, decreased gradually from the beginning of exercise until the resting after exercise. In addition, the EEG (C3) results of SE complexity ratio and FD complexity ratio decreased gradually from resting to last session of exercise in the moderate fatigue whereas in severe fatigue these ratios increased at the late exercising stage. Our results demonstrate that different patterns between moderate fatigue and severe fatigue can be effectively extracted by using the proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助朱良宇采纳,获得10
刚刚
刚刚
刚刚
福禄小金刚完成签到,获得积分10
1秒前
3秒前
风清扬应助追风采纳,获得10
3秒前
酷炫的流沙完成签到,获得积分20
4秒前
4秒前
5秒前
多多完成签到,获得积分10
5秒前
隐形曼青应助caocao采纳,获得10
5秒前
5秒前
7秒前
7秒前
彭于晏应助馨妈采纳,获得10
7秒前
Owen应助迷你的白筠采纳,获得10
7秒前
7秒前
小高发布了新的文献求助10
8秒前
8秒前
大胆菲音完成签到,获得积分10
8秒前
梦里花落声应助方可采纳,获得10
9秒前
Hello应助方可采纳,获得10
9秒前
9秒前
雨上悲发布了新的文献求助10
9秒前
10秒前
风之晨曦发布了新的文献求助80
10秒前
量子星尘发布了新的文献求助10
10秒前
冷冷发布了新的文献求助10
10秒前
大胆菲音发布了新的文献求助10
13秒前
钟兆宁发布了新的文献求助10
13秒前
13秒前
14秒前
无私的以冬完成签到,获得积分10
15秒前
15秒前
英俊的铭应助浩博木东采纳,获得10
15秒前
威武的雨筠完成签到 ,获得积分10
16秒前
JaCkzz关注了科研通微信公众号
17秒前
葡萄学姐发布了新的文献求助30
17秒前
赘婿应助古月方源采纳,获得10
18秒前
szy完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468225
求助须知:如何正确求助?哪些是违规求助? 4571705
关于积分的说明 14331270
捐赠科研通 4498225
什么是DOI,文献DOI怎么找? 2464411
邀请新用户注册赠送积分活动 1453131
关于科研通互助平台的介绍 1427777