Extraction of physically fatigue feature in exercise using electromyography, electroencephalography and electrocardiography

脑电图 肌电图 心电图 特征提取 计算机科学 模式识别(心理学) 人工智能 心脏病学 物理医学与康复 医学 心理学 神经科学
作者
Szu‐Yu Lin,Chih‐I Hung,Hsin-I Wang,Yu‐Te Wu,Po-Shan Wang
标识
DOI:10.1109/icnc.2015.7378050
摘要

In this study, we employed Morlet wavelet, sample entropy, and fractal dimension on EEG and EMG signal to extract the feature of physical fatigue in the exercise. The result may be helpful for rehabilitation in effectiveness evaluation. Twenty healthy subjects participated in cycling exercise, and their physiological signals, including EEG, EMG, and ECG were recorded. In addition, we recorded subjects' feeling of fatigue since each subject has different physical strength and tolerance of non-stopping exercise. Signals in different stages, namely, resting, early, middle and late stages of exercising, were analyzed. ECG signal was used to categorize subjects into two groups, namely, moderate fatigue and severe fatigue. In EEG results, the averaged power, sample entropy, and fractal dimension of signals indicated that resting stages before and after the exercise were distinct from exercising stage. In severe fatigue, the averaged power within each frequency band of EEG increased with the duration of exercise whereas the power ratio, denoted by (theta+ alpha)/ beta, decreased gradually from the beginning of exercise until the resting after exercise. In addition, the EEG (C3) results of SE complexity ratio and FD complexity ratio decreased gradually from resting to last session of exercise in the moderate fatigue whereas in severe fatigue these ratios increased at the late exercising stage. Our results demonstrate that different patterns between moderate fatigue and severe fatigue can be effectively extracted by using the proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ovoclive完成签到,获得积分10
刚刚
缥缈冷安完成签到,获得积分10
1秒前
SciGPT应助魏源采纳,获得10
5秒前
暴躁小龙完成签到,获得积分10
5秒前
6秒前
大模型应助勤奋梨愁采纳,获得10
6秒前
zwk完成签到,获得积分10
7秒前
Meidina完成签到,获得积分10
7秒前
微醺小王完成签到,获得积分10
8秒前
9秒前
David发布了新的文献求助20
11秒前
gan完成签到,获得积分10
11秒前
Jasper应助nini采纳,获得10
11秒前
暴躁小龙发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
遇见完成签到 ,获得积分10
13秒前
13秒前
只想困瞌睡完成签到,获得积分10
14秒前
tonyhuang完成签到,获得积分10
14秒前
鸣蜩阿六完成签到,获得积分10
16秒前
笃定完成签到,获得积分10
16秒前
41应助潘善若采纳,获得10
16秒前
16秒前
19秒前
momo发布了新的文献求助10
19秒前
whisper完成签到,获得积分10
20秒前
momo应助奚斌采纳,获得10
21秒前
情怀应助十九岁的时差采纳,获得10
22秒前
独角兽完成签到 ,获得积分10
23秒前
zhy完成签到,获得积分10
23秒前
23秒前
Rondab应助bluebear采纳,获得10
24秒前
David完成签到,获得积分10
28秒前
文档发布了新的文献求助10
28秒前
付创发布了新的文献求助10
28秒前
ssw完成签到,获得积分10
28秒前
大白发布了新的文献求助10
31秒前
MHM完成签到,获得积分10
33秒前
首席或雪月完成签到,获得积分10
34秒前
天天快乐应助用户5063899采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158