Smart monitoring system with multi-criteria decision using a feature based computer vision technique

泥石流 事件(粒子物理) 特征(语言学) 计算机科学 构造(python库) 预警系统 碎片 自然灾害 预警系统 人工智能 计算机视觉 实时计算 地理 气象学 哲学 程序设计语言 物理 电信 量子力学 语言学
作者
Chih-Wei Lin,Wen‐Ko Hsu,Dung‐Jiang Chiou,Cheng-Wu Chen,Wei‐Ling Chiang
出处
期刊:Smart Structures and Systems [Techno-Press]
卷期号:15 (6): 1583-1600 被引量:4
标识
DOI:10.12989/sss.2015.15.6.1583
摘要

When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上上谦发布了新的文献求助10
1秒前
寒冷鸭子完成签到,获得积分10
1秒前
卿沐发布了新的文献求助10
1秒前
所所应助儒雅老太采纳,获得10
2秒前
于是真的发布了新的文献求助10
2秒前
虚拟的小虾米完成签到,获得积分10
2秒前
2秒前
ECCE713发布了新的文献求助10
3秒前
梓泽丘墟应助小于采纳,获得20
4秒前
书羽发布了新的文献求助10
5秒前
5秒前
6秒前
汉堡包应助shai_ga采纳,获得10
6秒前
6秒前
金钰贝儿应助自由的成仁采纳,获得10
7秒前
小蘑菇应助大呲花采纳,获得10
8秒前
今后应助scinature采纳,获得10
9秒前
脑洞疼应助熊猫盖浇饭采纳,获得10
9秒前
自信芝麻完成签到,获得积分10
9秒前
10秒前
陈二萌完成签到,获得积分10
10秒前
共享精神应助折光采纳,获得10
10秒前
11秒前
无名发布了新的文献求助10
11秒前
11秒前
吃个大西瓜完成签到,获得积分10
12秒前
Lucas应助NEW采纳,获得10
12秒前
12秒前
14秒前
14秒前
南方姑娘完成签到,获得积分10
14秒前
QL发布了新的文献求助10
16秒前
彭于晏应助开飞机的小羊采纳,获得10
16秒前
阿辉完成签到,获得积分10
16秒前
16秒前
silent完成签到,获得积分10
16秒前
甜甜玫瑰应助上上谦采纳,获得10
17秒前
JamesPei应助上上谦采纳,获得10
17秒前
归诚发布了新的文献求助10
18秒前
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042