Color Correction Using Root-Polynomial Regression

多项式回归 颜色校正 多项式的 数学 人工智能 词根(语言学) 模式识别(心理学) 回归 回归分析 计算机科学 图像(数学) 统计 数学分析 语言学 哲学
作者
Graham D. Finlayson,Michał Mackiewicz,Anya Hurlbert
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1460-1470 被引量:184
标识
DOI:10.1109/tip.2015.2405336
摘要

Cameras record three color responses (RGB) which are device dependent. Camera coordinates are mapped to a standard color space, such as XYZ-useful for color measurement-by a mapping function, e.g., the simple 3×3 linear transform (usually derived through regression). This mapping, which we will refer to as linear color correction (LCC), has been demonstrated to work well in the number of studies. However, it can map RGBs to XYZs with high error. The advantage of the LCC is that it is independent of camera exposure. An alternative and potentially more powerful method for color correction is polynomial color correction (PCC). Here, the R, G, and B values at a pixel are extended by the polynomial terms. For a given calibration training set PCC can significantly reduce the colorimetric error. However, the PCC fit depends on exposure, i.e., as exposure changes the vector of polynomial components is altered in a nonlinear way which results in hue and saturation shifts. This paper proposes a new polynomial-type regression loosely related to the idea of fractional polynomials which we call root-PCC (RPCC). Our idea is to take each term in a polynomial expansion and take its kth root of each k-degree term. It is easy to show terms defined in this way scale with exposure. RPCC is a simple (low complexity) extension of LCC. The experiments presented in this paper demonstrate that RPCC enhances color correction performance on real and synthetic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵雅阳完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
LHL发布了新的文献求助10
2秒前
Hello应助阳光的映梦采纳,获得10
2秒前
跨越山海的热爱完成签到 ,获得积分10
2秒前
3秒前
高贵雅阳发布了新的文献求助10
3秒前
桐桐应助火鸡味锅巴采纳,获得10
3秒前
4秒前
危机的雍发布了新的文献求助10
4秒前
4秒前
可爱的函函应助无私的珩采纳,获得10
5秒前
老陈发布了新的文献求助10
5秒前
5秒前
6秒前
Yolo发布了新的文献求助10
6秒前
二二二完成签到 ,获得积分10
6秒前
6秒前
6秒前
妮妮发布了新的文献求助10
6秒前
luyong完成签到 ,获得积分10
7秒前
刘畅完成签到,获得积分10
7秒前
无辜曼冬完成签到,获得积分10
7秒前
SYLH应助甄的艾你采纳,获得10
8秒前
Nicole发布了新的文献求助10
8秒前
SciGPT应助费静芙采纳,获得10
8秒前
9秒前
善学以致用应助小小采纳,获得10
9秒前
10秒前
10秒前
11发布了新的文献求助10
10秒前
高山我梦发布了新的文献求助10
10秒前
10秒前
11秒前
沉静从露完成签到,获得积分10
11秒前
小明同学发布了新的文献求助10
11秒前
12秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271