纳米凝胶
化学
膜
生物医学工程
药物输送
生物化学
医学
有机化学
作者
Takayuki Miyahara,Myat Nyan,Asako Shimoda,Yuka Yamamoto,Shinji Kuroda,Makoto Shiota,Kazunari Akiyoshi,Shohei Kasugai
摘要
Cholesterol-bearing pullulan (CHP) nanogel is a synthetic degradable biomaterial for drug delivery with high biocompatibility. Guided bone regeneration (GBR) is a bone augmentation technique in which a membrane is used to create and keep a secluded regenerative space. The purpose of the present study was to evaluate the effects of the novel CHP nanogel membrane in GBR. Thirty-six adult Wistar rats were used and bilaterally symmetrical full-thickness parietal bone defects of 5 mm diameter were created with a bone trephine burr. Each defect was covered with the collagen membrane or the CHP nanogel membrane or untreated without any membrane. The animals were sacrificed at 2, 4 and 8 weeks and analysed radiologically and histologically. Furthermore, after incubating human serum with CHP nanogel or collagen, the amount of PDGF in the serum was measured using ELISA. New bone formation in terms of bone volume was higher in the nanogel group than in the control or collagen groups at 2 and 4 weeks. At 8 weeks, both membrane groups showed higher bone volumes than the control group. Notably, the newly-formed bone in the bone defect in the nanogel group was uniform and histologically indistinguishable from the original bone, whereas in the collagen group the new bone showed an irregular structure that was completely different from the original bone. After incubating with CHP nanogel, the amount of PDGF in the serum decreased significantly. CHP nanogel GBR membrane favourably stimulated bone regeneration, in which a unique characteristic of CHP nanogel, the storage of endogenous growth factors, was likely implicated. Copyright © 2011 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI