Nondestructive Prediction of Total Phenolics, Flavonoid Contents, and Antioxidant Capacity of Rice Grain Using Near-Infrared Spectroscopy

偏最小二乘回归 类黄酮 Trolox当量抗氧化能力 化学 食品科学 抗氧化剂 没食子酸 糙米 抗氧化能力 生物化学 数学 统计
作者
Caiya Zhang,Yun Shen,Chen Jian,Peng Xiao,Jinsong Bao
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:56 (18): 8268-8272 被引量:87
标识
DOI:10.1021/jf801830z
摘要

Phytochemicals such as phenolics and flavonoids, which are present in rice grains, are associated with reduced risk of developing chronic diseases such as cardiovascular disease, type 2 diabetes, and some cancers. The phenolic and flavonoid compounds in rice grain also contribute to the antioxidant activity. Biofortification of rice grain by conventional breeding is a way to improve nutritional quality so as to combat nutritional deficiency. Since wet chemistry measurement of phenolic and flavonoid contents and antioxidant activity are time-consuming and expensive, a rapid and nondestructive predictive method based on near-infrared spectroscopy (NIRS) would be valuable to measure these nutritional quality parameters. In the present study, calibration models for measurement of phenolic and flavonoid contents and antioxidant capacity were developed using principal component analysis (PCA), partial least-squares regression (PLS), and modified partial least-squares regression (mPLS) methods with the spectra of the dehulled grain (brown rice). The results showed that NIRS could effectively predict the total phenolic contents and antioxidant capacity by PLS and mPLS methods. The standard errors of prediction (SEP) were 47.1 and 45.9 mg gallic acid equivalent (GAE) for phenolic content, and the coefficients of determination ( r (2)) were 0.849 and 0.864 by PLS and mPLS methods, respectively. Both PLS and mPLS methods gave similarly accurate performance for prediction of antioxidant capacity with SEP of 0.28 mM Trolox equivalent antioxidant capacity (TEAC) and r (2) of 0.82. However, the NIRS models were not successful for flavonoid content with the three methods ( r (2) < 0.4). The models reported here are usable for routine screening of a large number of samples in early generation screening in breeding programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴仇血完成签到,获得积分10
1秒前
而荷发布了新的文献求助10
2秒前
3秒前
3秒前
xxm完成签到,获得积分10
4秒前
俭朴仇血发布了新的文献求助10
4秒前
5秒前
Popeye给Popeye的求助进行了留言
8秒前
传奇3应助爹爹采纳,获得10
8秒前
songjing发布了新的文献求助10
9秒前
kai完成签到,获得积分10
11秒前
12秒前
雪白傲蕾完成签到,获得积分10
13秒前
852应助VonJane采纳,获得30
13秒前
14秒前
14秒前
songjing完成签到,获得积分10
15秒前
15秒前
15秒前
冷静尔芙发布了新的文献求助10
16秒前
传奇3应助tiasn采纳,获得10
18秒前
annoying发布了新的文献求助30
18秒前
orixero应助ShengzhangLiu采纳,获得10
18秒前
爹爹发布了新的文献求助10
19秒前
张伟发布了新的文献求助10
20秒前
齐天大圣应助脆皮小小酥采纳,获得20
20秒前
Jasper应助LYD采纳,获得10
21秒前
淡定的过客完成签到,获得积分10
21秒前
汉堡包应助LI采纳,获得10
23秒前
xzy998应助淡淡夕阳采纳,获得10
23秒前
24秒前
游一完成签到,获得积分10
25秒前
小二郎应助科研通管家采纳,获得10
26秒前
小二郎应助科研通管家采纳,获得10
27秒前
酷炫翠桃应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
27秒前
隐形曼青应助科研通管家采纳,获得30
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991883
求助须知:如何正确求助?哪些是违规求助? 3533014
关于积分的说明 11260344
捐赠科研通 3272297
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425