Nondestructive Prediction of Total Phenolics, Flavonoid Contents, and Antioxidant Capacity of Rice Grain Using Near-Infrared Spectroscopy

偏最小二乘回归 类黄酮 Trolox当量抗氧化能力 化学 食品科学 抗氧化剂 没食子酸 糙米 抗氧化能力 生物化学 数学 统计
作者
Caiya Zhang,Yun Shen,Chen Jian,Peng Xiao,Jinsong Bao
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:56 (18): 8268-8272 被引量:87
标识
DOI:10.1021/jf801830z
摘要

Phytochemicals such as phenolics and flavonoids, which are present in rice grains, are associated with reduced risk of developing chronic diseases such as cardiovascular disease, type 2 diabetes, and some cancers. The phenolic and flavonoid compounds in rice grain also contribute to the antioxidant activity. Biofortification of rice grain by conventional breeding is a way to improve nutritional quality so as to combat nutritional deficiency. Since wet chemistry measurement of phenolic and flavonoid contents and antioxidant activity are time-consuming and expensive, a rapid and nondestructive predictive method based on near-infrared spectroscopy (NIRS) would be valuable to measure these nutritional quality parameters. In the present study, calibration models for measurement of phenolic and flavonoid contents and antioxidant capacity were developed using principal component analysis (PCA), partial least-squares regression (PLS), and modified partial least-squares regression (mPLS) methods with the spectra of the dehulled grain (brown rice). The results showed that NIRS could effectively predict the total phenolic contents and antioxidant capacity by PLS and mPLS methods. The standard errors of prediction (SEP) were 47.1 and 45.9 mg gallic acid equivalent (GAE) for phenolic content, and the coefficients of determination ( r (2)) were 0.849 and 0.864 by PLS and mPLS methods, respectively. Both PLS and mPLS methods gave similarly accurate performance for prediction of antioxidant capacity with SEP of 0.28 mM Trolox equivalent antioxidant capacity (TEAC) and r (2) of 0.82. However, the NIRS models were not successful for flavonoid content with the three methods ( r (2) < 0.4). The models reported here are usable for routine screening of a large number of samples in early generation screening in breeding programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助排骨炖豆角采纳,获得10
1秒前
1秒前
顾矜应助木子采纳,获得10
1秒前
feng发布了新的文献求助10
1秒前
成就的小熊猫完成签到,获得积分10
2秒前
2秒前
Morgenstern_ZH完成签到,获得积分10
3秒前
hua发布了新的文献求助10
3秒前
_Forelsket_完成签到,获得积分10
3秒前
3秒前
半颗橙子完成签到 ,获得积分10
5秒前
科研通AI5应助zmy采纳,获得10
5秒前
善学以致用应助enoot采纳,获得10
6秒前
JamesPei应助失眠的血茗采纳,获得10
6秒前
青山发布了新的文献求助10
6秒前
亻鱼发布了新的文献求助10
7秒前
脑洞疼应助成就的小熊猫采纳,获得10
7秒前
7秒前
waterclouds完成签到 ,获得积分10
7秒前
圆圈儿完成签到,获得积分10
7秒前
司空剑封完成签到,获得积分10
8秒前
8秒前
海棠yiyi完成签到,获得积分10
8秒前
8秒前
梁小鑫发布了新的文献求助10
8秒前
Jenny应助圈圈采纳,获得10
9秒前
内向青文完成签到,获得积分10
9秒前
lefora完成签到,获得积分10
9秒前
丰知然应助CO2采纳,获得10
10秒前
Zhihu完成签到,获得积分10
10秒前
feng完成签到,获得积分10
11秒前
11秒前
美丽稀完成签到,获得积分10
12秒前
PXY应助屁王采纳,获得10
12秒前
sunburst完成签到,获得积分10
12秒前
狼主完成签到 ,获得积分10
12秒前
吕亦寒完成签到,获得积分10
12秒前
junzilan发布了新的文献求助10
13秒前
ZL发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740