Nondestructive Prediction of Total Phenolics, Flavonoid Contents, and Antioxidant Capacity of Rice Grain Using Near-Infrared Spectroscopy

偏最小二乘回归 类黄酮 Trolox当量抗氧化能力 化学 食品科学 抗氧化剂 没食子酸 糙米 抗氧化能力 生物化学 数学 统计
作者
Caiya Zhang,Yun Shen,Chen Jian,Peng Xiao,Jinsong Bao
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:56 (18): 8268-8272 被引量:87
标识
DOI:10.1021/jf801830z
摘要

Phytochemicals such as phenolics and flavonoids, which are present in rice grains, are associated with reduced risk of developing chronic diseases such as cardiovascular disease, type 2 diabetes, and some cancers. The phenolic and flavonoid compounds in rice grain also contribute to the antioxidant activity. Biofortification of rice grain by conventional breeding is a way to improve nutritional quality so as to combat nutritional deficiency. Since wet chemistry measurement of phenolic and flavonoid contents and antioxidant activity are time-consuming and expensive, a rapid and nondestructive predictive method based on near-infrared spectroscopy (NIRS) would be valuable to measure these nutritional quality parameters. In the present study, calibration models for measurement of phenolic and flavonoid contents and antioxidant capacity were developed using principal component analysis (PCA), partial least-squares regression (PLS), and modified partial least-squares regression (mPLS) methods with the spectra of the dehulled grain (brown rice). The results showed that NIRS could effectively predict the total phenolic contents and antioxidant capacity by PLS and mPLS methods. The standard errors of prediction (SEP) were 47.1 and 45.9 mg gallic acid equivalent (GAE) for phenolic content, and the coefficients of determination ( r (2)) were 0.849 and 0.864 by PLS and mPLS methods, respectively. Both PLS and mPLS methods gave similarly accurate performance for prediction of antioxidant capacity with SEP of 0.28 mM Trolox equivalent antioxidant capacity (TEAC) and r (2) of 0.82. However, the NIRS models were not successful for flavonoid content with the three methods ( r (2) < 0.4). The models reported here are usable for routine screening of a large number of samples in early generation screening in breeding programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋洋发布了新的文献求助10
2秒前
3秒前
思源应助可靠的yi1采纳,获得10
3秒前
bb关闭了bb文献求助
3秒前
YANGGG发布了新的文献求助10
4秒前
科研小飞侠完成签到,获得积分10
4秒前
33完成签到,获得积分10
4秒前
5秒前
陈扇完成签到 ,获得积分10
6秒前
阿郑发布了新的文献求助10
6秒前
orixero应助繁荣的安白采纳,获得10
6秒前
Spaz完成签到,获得积分10
6秒前
7秒前
7秒前
遇见完成签到,获得积分20
8秒前
9秒前
9秒前
许子健发布了新的文献求助10
10秒前
mtt应助洋洋采纳,获得10
11秒前
蓓蓓0303发布了新的文献求助10
12秒前
嘟嘟发布了新的文献求助10
12秒前
ohnk发布了新的文献求助10
12秒前
long发布了新的文献求助10
13秒前
Vency应助辞镜采纳,获得30
13秒前
Yuuuuu发布了新的文献求助10
13秒前
Picachu完成签到 ,获得积分10
14秒前
糊涂的疾完成签到 ,获得积分10
14秒前
陈霸下。完成签到,获得积分10
15秒前
16秒前
為來完成签到,获得积分10
17秒前
小蘑菇应助帕克采纳,获得10
17秒前
俏皮的友容完成签到,获得积分10
17秒前
17秒前
19秒前
20秒前
慕青应助123456采纳,获得10
21秒前
RATHER发布了新的文献求助10
21秒前
丹丹发布了新的文献求助10
21秒前
22秒前
kk发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493