Condition Prediction of Deteriorating Concrete Bridges Using Bayesian Updating

桥(图论) 可靠性(半导体) 贝叶斯概率 计算机科学 可靠性工程 组分(热力学) 数据挖掘 工程类 人工智能 量子力学 医学 热力学 物理 内科学 功率(物理)
作者
Michael P. Enright,Dan M. Frangopol
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:125 (10): 1118-1125 被引量:186
标识
DOI:10.1061/(asce)0733-9445(1999)125:10(1118)
摘要

It is well known that the U.S. infrastructure is in need of extensive repair. To ensure that the scarce resources available for maintaining the U.S. bridge inventory are spent in an optimal manner, bridge management programs have been mandated by the Federal Highway Administration. However, these programs are mainly based on data from subjective condition assessments and do not use time-variant bridge reliability for decision making. Many nondestructive test methods exist for the detailed inspection of bridges. Predictions based solely on inspection data may be questionable, particularly if limitations and errors in the measurement methods that are used are not considered. Through the application of Bayesian techniques, information from both inspection data and engineering judgment can be combined and used in a rational manner to better predict future bridge conditions. In this study, the influence of inspection updating on time-variant bridge reliability is illustrated for an existing reinforced concrete bridge. Inspection results are combined with prior information in a Bayesian light. The approach is illustrated for a reinforced concrete bridge located near Pueblo, Colo. For this bridge the effects of corrosion initiation time and rate on time-variant strength are illustrated using simulation. Inspection results are combined with prior information using Bayesian updating. Time-variant bridge reliability computations are performed using a combined technique of adaptive importance sampling and numerical integration. The approach presented allows accounting for inspection results in the quantitative assessment of condition of bridges and shows how to incorporate quantitative information into bridge system and component condition prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
查无此人发布了新的文献求助10
刚刚
承诺信守完成签到,获得积分10
1秒前
酷波er应助七点采纳,获得10
1秒前
2秒前
2秒前
ABC发布了新的文献求助10
2秒前
醋灯笼完成签到,获得积分10
3秒前
3秒前
lalala应助sci_sci采纳,获得10
4秒前
5秒前
5秒前
FashionBoy应助夏末采纳,获得10
5秒前
6秒前
团子发布了新的文献求助10
6秒前
科研通AI6应助guangyu采纳,获得10
7秒前
传奇3应助聪明的半青采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
端庄芯发布了新的文献求助10
10秒前
11秒前
不做科研发布了新的文献求助10
11秒前
幸运鹅47完成签到,获得积分10
12秒前
夜染发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
15秒前
bonjourqiao完成签到,获得积分10
17秒前
17秒前
18秒前
清凉茶完成签到,获得积分10
19秒前
小二郎应助花生什么树了采纳,获得10
20秒前
天天快乐应助iwonder采纳,获得10
20秒前
wanci应助郑方舟采纳,获得10
21秒前
珊明治完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
司纤户羽完成签到,获得积分10
25秒前
科目三应助77采纳,获得10
25秒前
sunny完成签到 ,获得积分10
26秒前
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304