Condition Prediction of Deteriorating Concrete Bridges Using Bayesian Updating

桥(图论) 可靠性(半导体) 贝叶斯概率 计算机科学 可靠性工程 组分(热力学) 数据挖掘 工程类 人工智能 量子力学 医学 热力学 物理 内科学 功率(物理)
作者
Michael P. Enright,Dan M. Frangopol
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:125 (10): 1118-1125 被引量:186
标识
DOI:10.1061/(asce)0733-9445(1999)125:10(1118)
摘要

It is well known that the U.S. infrastructure is in need of extensive repair. To ensure that the scarce resources available for maintaining the U.S. bridge inventory are spent in an optimal manner, bridge management programs have been mandated by the Federal Highway Administration. However, these programs are mainly based on data from subjective condition assessments and do not use time-variant bridge reliability for decision making. Many nondestructive test methods exist for the detailed inspection of bridges. Predictions based solely on inspection data may be questionable, particularly if limitations and errors in the measurement methods that are used are not considered. Through the application of Bayesian techniques, information from both inspection data and engineering judgment can be combined and used in a rational manner to better predict future bridge conditions. In this study, the influence of inspection updating on time-variant bridge reliability is illustrated for an existing reinforced concrete bridge. Inspection results are combined with prior information in a Bayesian light. The approach is illustrated for a reinforced concrete bridge located near Pueblo, Colo. For this bridge the effects of corrosion initiation time and rate on time-variant strength are illustrated using simulation. Inspection results are combined with prior information using Bayesian updating. Time-variant bridge reliability computations are performed using a combined technique of adaptive importance sampling and numerical integration. The approach presented allows accounting for inspection results in the quantitative assessment of condition of bridges and shows how to incorporate quantitative information into bridge system and component condition prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
self2008发布了新的文献求助10
1秒前
1秒前
1秒前
恢复出厂设置完成签到,获得积分10
2秒前
传统的冰海完成签到,获得积分10
2秒前
科目三应助holly采纳,获得10
2秒前
3秒前
勤恳以寒发布了新的文献求助10
3秒前
aaa关注了科研通微信公众号
4秒前
4秒前
搜集达人应助sc采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
天天快乐应助平常如花采纳,获得10
5秒前
没头脑姑娘完成签到,获得积分10
5秒前
着急的凌青完成签到 ,获得积分10
5秒前
self2008完成签到,获得积分10
5秒前
hugh完成签到,获得积分10
8秒前
shuiyu发布了新的文献求助10
8秒前
黎L完成签到,获得积分10
9秒前
9秒前
10秒前
刘五州发布了新的文献求助10
10秒前
幽默的绿草完成签到,获得积分10
10秒前
Akim应助战舞飞扬采纳,获得10
10秒前
体贴代容发布了新的文献求助10
11秒前
金金发布了新的文献求助10
11秒前
12秒前
脑洞疼应助甜甜戎采纳,获得10
12秒前
12秒前
13秒前
遇见完成签到,获得积分10
13秒前
13秒前
shuiyu完成签到,获得积分10
14秒前
15秒前
轻松问筠完成签到,获得积分10
15秒前
SciGPT应助孙子豪采纳,获得10
16秒前
程smile笑发布了新的文献求助10
16秒前
Mu发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109