Condition Prediction of Deteriorating Concrete Bridges Using Bayesian Updating

桥(图论) 可靠性(半导体) 贝叶斯概率 计算机科学 可靠性工程 组分(热力学) 数据挖掘 工程类 人工智能 量子力学 医学 热力学 物理 内科学 功率(物理)
作者
Michael P. Enright,Dan M. Frangopol
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:125 (10): 1118-1125 被引量:186
标识
DOI:10.1061/(asce)0733-9445(1999)125:10(1118)
摘要

It is well known that the U.S. infrastructure is in need of extensive repair. To ensure that the scarce resources available for maintaining the U.S. bridge inventory are spent in an optimal manner, bridge management programs have been mandated by the Federal Highway Administration. However, these programs are mainly based on data from subjective condition assessments and do not use time-variant bridge reliability for decision making. Many nondestructive test methods exist for the detailed inspection of bridges. Predictions based solely on inspection data may be questionable, particularly if limitations and errors in the measurement methods that are used are not considered. Through the application of Bayesian techniques, information from both inspection data and engineering judgment can be combined and used in a rational manner to better predict future bridge conditions. In this study, the influence of inspection updating on time-variant bridge reliability is illustrated for an existing reinforced concrete bridge. Inspection results are combined with prior information in a Bayesian light. The approach is illustrated for a reinforced concrete bridge located near Pueblo, Colo. For this bridge the effects of corrosion initiation time and rate on time-variant strength are illustrated using simulation. Inspection results are combined with prior information using Bayesian updating. Time-variant bridge reliability computations are performed using a combined technique of adaptive importance sampling and numerical integration. The approach presented allows accounting for inspection results in the quantitative assessment of condition of bridges and shows how to incorporate quantitative information into bridge system and component condition prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助XNMR采纳,获得10
1秒前
幸运星完成签到 ,获得积分10
2秒前
Fayol发布了新的文献求助10
2秒前
5秒前
SciGPT应助coco采纳,获得10
6秒前
Dingjiani发布了新的文献求助10
8秒前
David完成签到,获得积分0
9秒前
zhanzhanzhan发布了新的文献求助10
10秒前
10秒前
健忘马里奥完成签到 ,获得积分10
10秒前
LiJing666完成签到,获得积分10
11秒前
LiJing666发布了新的文献求助10
15秒前
15秒前
大模型应助温柔翰采纳,获得10
15秒前
小枫完成签到 ,获得积分10
16秒前
破忒头发布了新的文献求助10
19秒前
19秒前
orixero应助LiJing666采纳,获得10
19秒前
在水一方应助zhanzhanzhan采纳,获得10
20秒前
李金奥完成签到 ,获得积分10
20秒前
21秒前
答辩完成签到,获得积分10
23秒前
wslly完成签到,获得积分10
23秒前
24秒前
25秒前
26秒前
27秒前
nk完成签到 ,获得积分10
27秒前
科研通AI2S应助Tonald Yang采纳,获得10
28秒前
干净的芮完成签到 ,获得积分10
28秒前
29秒前
danney发布了新的文献求助10
29秒前
冷静战斗机完成签到,获得积分10
29秒前
若冰发布了新的文献求助10
29秒前
chuxd发布了新的文献求助10
30秒前
TianY天翊发布了新的文献求助10
31秒前
leolee完成签到 ,获得积分10
31秒前
coco发布了新的文献求助10
31秒前
33秒前
Chan完成签到,获得积分10
33秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3205636
求助须知:如何正确求助?哪些是违规求助? 2854731
关于积分的说明 8096150
捐赠科研通 2519578
什么是DOI,文献DOI怎么找? 1352645
科研通“疑难数据库(出版商)”最低求助积分说明 641546
邀请新用户注册赠送积分活动 612579