Condition Prediction of Deteriorating Concrete Bridges Using Bayesian Updating

桥(图论) 可靠性(半导体) 贝叶斯概率 计算机科学 可靠性工程 组分(热力学) 数据挖掘 工程类 人工智能 医学 功率(物理) 物理 量子力学 内科学 热力学
作者
Michael P. Enright,Dan M. Frangopol
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:125 (10): 1118-1125 被引量:186
标识
DOI:10.1061/(asce)0733-9445(1999)125:10(1118)
摘要

It is well known that the U.S. infrastructure is in need of extensive repair. To ensure that the scarce resources available for maintaining the U.S. bridge inventory are spent in an optimal manner, bridge management programs have been mandated by the Federal Highway Administration. However, these programs are mainly based on data from subjective condition assessments and do not use time-variant bridge reliability for decision making. Many nondestructive test methods exist for the detailed inspection of bridges. Predictions based solely on inspection data may be questionable, particularly if limitations and errors in the measurement methods that are used are not considered. Through the application of Bayesian techniques, information from both inspection data and engineering judgment can be combined and used in a rational manner to better predict future bridge conditions. In this study, the influence of inspection updating on time-variant bridge reliability is illustrated for an existing reinforced concrete bridge. Inspection results are combined with prior information in a Bayesian light. The approach is illustrated for a reinforced concrete bridge located near Pueblo, Colo. For this bridge the effects of corrosion initiation time and rate on time-variant strength are illustrated using simulation. Inspection results are combined with prior information using Bayesian updating. Time-variant bridge reliability computations are performed using a combined technique of adaptive importance sampling and numerical integration. The approach presented allows accounting for inspection results in the quantitative assessment of condition of bridges and shows how to incorporate quantitative information into bridge system and component condition prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GoQao完成签到,获得积分10
刚刚
1秒前
斯文败类应助SMLW采纳,获得10
3秒前
善学以致用应助mingzzz1采纳,获得30
4秒前
鱼咬羊发布了新的文献求助10
4秒前
唯美发布了新的文献求助10
6秒前
8秒前
9秒前
SciGPT应助rachel03采纳,获得30
10秒前
Ava应助收声采纳,获得10
10秒前
11秒前
1122完成签到,获得积分10
11秒前
瓶子里的大好人完成签到,获得积分10
12秒前
13秒前
hqr发布了新的文献求助10
14秒前
yangzai发布了新的文献求助10
14秒前
nihao完成签到,获得积分10
14秒前
orixero应助辛子采纳,获得10
14秒前
量子星尘发布了新的文献求助50
15秒前
16秒前
17秒前
ED应助Smartan采纳,获得10
18秒前
18秒前
insane完成签到,获得积分10
20秒前
Panini发布了新的文献求助10
21秒前
Anna完成签到,获得积分10
21秒前
rachel03发布了新的文献求助30
22秒前
24秒前
26秒前
大耳朵图图完成签到,获得积分10
28秒前
jingwen发布了新的文献求助10
28秒前
Abner完成签到,获得积分10
30秒前
halabouqii发布了新的文献求助10
30秒前
娜娜完成签到 ,获得积分10
30秒前
31秒前
32秒前
33秒前
吴真好完成签到,获得积分10
35秒前
jiangchuansm完成签到,获得积分10
35秒前
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150