Condition Prediction of Deteriorating Concrete Bridges Using Bayesian Updating

桥(图论) 可靠性(半导体) 贝叶斯概率 计算机科学 可靠性工程 组分(热力学) 数据挖掘 工程类 人工智能 医学 功率(物理) 物理 量子力学 内科学 热力学
作者
Michael P. Enright,Dan M. Frangopol
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:125 (10): 1118-1125 被引量:186
标识
DOI:10.1061/(asce)0733-9445(1999)125:10(1118)
摘要

It is well known that the U.S. infrastructure is in need of extensive repair. To ensure that the scarce resources available for maintaining the U.S. bridge inventory are spent in an optimal manner, bridge management programs have been mandated by the Federal Highway Administration. However, these programs are mainly based on data from subjective condition assessments and do not use time-variant bridge reliability for decision making. Many nondestructive test methods exist for the detailed inspection of bridges. Predictions based solely on inspection data may be questionable, particularly if limitations and errors in the measurement methods that are used are not considered. Through the application of Bayesian techniques, information from both inspection data and engineering judgment can be combined and used in a rational manner to better predict future bridge conditions. In this study, the influence of inspection updating on time-variant bridge reliability is illustrated for an existing reinforced concrete bridge. Inspection results are combined with prior information in a Bayesian light. The approach is illustrated for a reinforced concrete bridge located near Pueblo, Colo. For this bridge the effects of corrosion initiation time and rate on time-variant strength are illustrated using simulation. Inspection results are combined with prior information using Bayesian updating. Time-variant bridge reliability computations are performed using a combined technique of adaptive importance sampling and numerical integration. The approach presented allows accounting for inspection results in the quantitative assessment of condition of bridges and shows how to incorporate quantitative information into bridge system and component condition prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
winterendless完成签到,获得积分10
1秒前
wweq发布了新的文献求助10
1秒前
小梦完成签到,获得积分10
1秒前
gwh68964402gwh完成签到,获得积分10
1秒前
落后的道之完成签到,获得积分10
1秒前
lalala完成签到,获得积分10
2秒前
从容的南完成签到,获得积分10
2秒前
李萍萍完成签到,获得积分10
3秒前
完美世界应助Huiqing采纳,获得10
3秒前
3秒前
烟花应助韭黄采纳,获得10
4秒前
daixan89完成签到 ,获得积分10
4秒前
百宝发布了新的文献求助10
4秒前
4秒前
刘晏均发布了新的文献求助10
4秒前
万能图书馆应助等待采纳,获得10
5秒前
冬瓜鑫发布了新的文献求助10
5秒前
XX完成签到,获得积分10
5秒前
佳思思完成签到,获得积分10
5秒前
李爱国应助lx采纳,获得10
5秒前
coconut完成签到,获得积分10
5秒前
积极废物完成签到 ,获得积分10
6秒前
fff完成签到,获得积分10
6秒前
wangxiaoyating完成签到,获得积分10
6秒前
7秒前
欢喜板凳完成签到 ,获得积分0
7秒前
大大超人关注了科研通微信公众号
8秒前
沉梦昂志_hzy完成签到,获得积分0
8秒前
orixero应助li采纳,获得10
8秒前
kmkz完成签到,获得积分10
8秒前
在水一方应助繁荣的悟空采纳,获得10
8秒前
9秒前
南宫书瑶完成签到,获得积分10
9秒前
fff发布了新的文献求助10
9秒前
9秒前
jam发布了新的文献求助20
10秒前
流萤完成签到,获得积分10
10秒前
hh关闭了hh文献求助
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997