Condition Prediction of Deteriorating Concrete Bridges Using Bayesian Updating

桥(图论) 可靠性(半导体) 贝叶斯概率 计算机科学 可靠性工程 组分(热力学) 数据挖掘 工程类 人工智能 量子力学 医学 热力学 物理 内科学 功率(物理)
作者
Michael P. Enright,Dan M. Frangopol
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:125 (10): 1118-1125 被引量:186
标识
DOI:10.1061/(asce)0733-9445(1999)125:10(1118)
摘要

It is well known that the U.S. infrastructure is in need of extensive repair. To ensure that the scarce resources available for maintaining the U.S. bridge inventory are spent in an optimal manner, bridge management programs have been mandated by the Federal Highway Administration. However, these programs are mainly based on data from subjective condition assessments and do not use time-variant bridge reliability for decision making. Many nondestructive test methods exist for the detailed inspection of bridges. Predictions based solely on inspection data may be questionable, particularly if limitations and errors in the measurement methods that are used are not considered. Through the application of Bayesian techniques, information from both inspection data and engineering judgment can be combined and used in a rational manner to better predict future bridge conditions. In this study, the influence of inspection updating on time-variant bridge reliability is illustrated for an existing reinforced concrete bridge. Inspection results are combined with prior information in a Bayesian light. The approach is illustrated for a reinforced concrete bridge located near Pueblo, Colo. For this bridge the effects of corrosion initiation time and rate on time-variant strength are illustrated using simulation. Inspection results are combined with prior information using Bayesian updating. Time-variant bridge reliability computations are performed using a combined technique of adaptive importance sampling and numerical integration. The approach presented allows accounting for inspection results in the quantitative assessment of condition of bridges and shows how to incorporate quantitative information into bridge system and component condition prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
赵鹏发布了新的文献求助10
1秒前
李爱国应助allzzwell采纳,获得10
1秒前
penpen完成签到,获得积分10
1秒前
517完成签到 ,获得积分10
2秒前
3秒前
3秒前
打工人完成签到,获得积分10
4秒前
4秒前
5秒前
万能图书馆应助Judy采纳,获得10
5秒前
6秒前
6秒前
11111发布了新的文献求助10
7秒前
Franco完成签到,获得积分10
7秒前
Lunjiang发布了新的文献求助10
8秒前
哈吉米发布了新的文献求助10
8秒前
元谷雪发布了新的文献求助10
9秒前
ZXC发布了新的文献求助10
9秒前
高兴的外套完成签到,获得积分10
9秒前
呆一起完成签到,获得积分10
9秒前
zmhstb发布了新的文献求助10
10秒前
FrankJeffison完成签到,获得积分10
10秒前
11秒前
11秒前
M_liya完成签到,获得积分10
11秒前
11秒前
所所应助qiii采纳,获得10
11秒前
砖砖发布了新的文献求助10
11秒前
11秒前
12秒前
木子水告完成签到,获得积分10
12秒前
XySun完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
杂面饼子完成签到,获得积分10
13秒前
好运不段女士完成签到,获得积分10
13秒前
CipherSage应助cwm采纳,获得10
14秒前
刘耀威发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233