Coronary atherosclerosis has been considered a chronic disease characterized by ongoing progression in response to systemic risk factors and local pro-atherogenic stimuli. As our understanding of the pathobiological mechanisms implicated in atherogenesis and plaque progression is evolving, effective treatment strategies have been developed that led to substantial reduction of the clinical manifestations and acute complications of coronary atherosclerotic disease. More recently, intracoronary imaging modalities have enabled detailed in vivo quantification and characterization of coronary atherosclerotic plaque, serial evaluation of atherosclerotic changes over time, and assessment of vascular responses to effective anti-atherosclerotic medications. The use of intracoronary imaging modalities has demonstrated that intensive lipid lowering can halt plaque progression and may even result in regression of coronary atheroma when the highest doses of the most potent statins are used. While current evidence indicates the feasibility of atheroma regression and of reversal of presumed high-risk plaque characteristics in response to intensive anti-atherosclerotic therapies, these changes of plaque size and composition are modest and their clinical implications remain largely elusive. Growing interest has focused on achieving more pronounced regression of coronary plaque using novel anti-atherosclerotic medications, and more importantly on elucidating ways toward clinical translation of favorable changes of plaque anatomy into more favorable clinical outcomes for our patients.