Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning

拖延 计算机科学 强化学习 作业车间调度 调度(生产过程) 工作车间 集合(抽象数据类型) 数学优化 流水车间调度 地铁列车时刻表 人工智能 数学 操作系统 程序设计语言
作者
Shu Luo,Linxuan Zhang,Yushun Fan
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:159: 107489-107489 被引量:152
标识
DOI:10.1016/j.cie.2021.107489
摘要

In modern volatile and complex manufacturing environment, dynamic events such as new job insertions and machine breakdowns may randomly occur at any time and different objectives in conflict with each other should be optimized simultaneously, leading to an urgent requirement of real-time multi-objective rescheduling methods that can achieve both time efficiency and solution quality. In this regard, this paper proposes an on-line rescheduling framework named as two-hierarchy deep Q network (THDQN) for the dynamic multi-objective flexible job shop scheduling problem (DMOFJSP) with new job insertions. Two practical objectives including total weighted tardiness and average machine utilization rate are optimized. The THDQN model contains two deep Q network (DQN) based agents. The higher-level DQN is a controller determining the temporary optimization goal for the lower DQN. At each rescheduling point, it takes the current state features as input and chooses a feasible goal to guide the behaviour of the lower DQN. Four different goals corresponding to four different forms of reward functions are suggested, each of which optimizes an indicator of tardiness or machine utilization rate. The lower-level DQN acts as an actuator. It takes the current state features together with the higher optimization goal as input and chooses a proper dispatching rule to achieve the given goal. Six composite dispatching rules are developed to select an available operation and assign it on a feasible machine, which serve as the candidate action set for the lower DQN. A novel training framework based on double DQN (DDQN) is designed. The trained THDQN is compared with each proposed composite dispatching rule, existing well-known dispatching rules as well as other reinforcement learning based scheduling methods on a wide range of test instances. Results of numerical experiments have confirmed both the effectiveness and generality of the proposed THDQN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
脑洞疼应助anuo采纳,获得10
1秒前
2秒前
2秒前
Alienwalker完成签到 ,获得积分10
3秒前
高贵雅阳完成签到,获得积分10
3秒前
3秒前
Ash发布了新的文献求助10
4秒前
4秒前
4秒前
drift完成签到,获得积分10
5秒前
小蜂鸟发布了新的文献求助10
5秒前
纹银完成签到,获得积分10
5秒前
5秒前
5秒前
hhchhcmxhf完成签到,获得积分10
5秒前
5秒前
传奇3应助买瓜吗采纳,获得10
5秒前
llllllll发布了新的文献求助10
5秒前
秋寒松发布了新的文献求助10
6秒前
陈可蓉发布了新的文献求助10
6秒前
6秒前
7秒前
我是老大应助鸡柳先知采纳,获得30
7秒前
CharlotteBlue应助高贵雅阳采纳,获得30
7秒前
小飞侠发布了新的文献求助10
8秒前
czq完成签到,获得积分20
8秒前
bkagyin应助迷人问兰采纳,获得30
8秒前
aa发布了新的文献求助10
8秒前
9秒前
9秒前
电闪发布了新的文献求助10
9秒前
yzWang完成签到,获得积分10
9秒前
10秒前
why发布了新的文献求助10
10秒前
10秒前
MAOJCFK发布了新的文献求助10
10秒前
勿忘来时路完成签到,获得积分10
10秒前
俊逸海豚发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751