Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning

拖延 计算机科学 强化学习 作业车间调度 调度(生产过程) 工作车间 集合(抽象数据类型) 数学优化 流水车间调度 地铁列车时刻表 人工智能 数学 操作系统 程序设计语言
作者
Shu Luo,Linxuan Zhang,Yushun Fan
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:159: 107489-107489 被引量:152
标识
DOI:10.1016/j.cie.2021.107489
摘要

In modern volatile and complex manufacturing environment, dynamic events such as new job insertions and machine breakdowns may randomly occur at any time and different objectives in conflict with each other should be optimized simultaneously, leading to an urgent requirement of real-time multi-objective rescheduling methods that can achieve both time efficiency and solution quality. In this regard, this paper proposes an on-line rescheduling framework named as two-hierarchy deep Q network (THDQN) for the dynamic multi-objective flexible job shop scheduling problem (DMOFJSP) with new job insertions. Two practical objectives including total weighted tardiness and average machine utilization rate are optimized. The THDQN model contains two deep Q network (DQN) based agents. The higher-level DQN is a controller determining the temporary optimization goal for the lower DQN. At each rescheduling point, it takes the current state features as input and chooses a feasible goal to guide the behaviour of the lower DQN. Four different goals corresponding to four different forms of reward functions are suggested, each of which optimizes an indicator of tardiness or machine utilization rate. The lower-level DQN acts as an actuator. It takes the current state features together with the higher optimization goal as input and chooses a proper dispatching rule to achieve the given goal. Six composite dispatching rules are developed to select an available operation and assign it on a feasible machine, which serve as the candidate action set for the lower DQN. A novel training framework based on double DQN (DDQN) is designed. The trained THDQN is compared with each proposed composite dispatching rule, existing well-known dispatching rules as well as other reinforcement learning based scheduling methods on a wide range of test instances. Results of numerical experiments have confirmed both the effectiveness and generality of the proposed THDQN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanq发布了新的文献求助10
刚刚
ZQQ关闭了ZQQ文献求助
刚刚
常大美女发布了新的文献求助10
1秒前
Qionglin完成签到,获得积分10
2秒前
2秒前
2秒前
鱼鱼完成签到,获得积分10
2秒前
不要加糖发布了新的文献求助10
3秒前
燕晓啸完成签到 ,获得积分0
3秒前
呆小蓉发布了新的文献求助10
3秒前
ddd发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
LAST完成签到,获得积分10
5秒前
张世瑞发布了新的文献求助10
5秒前
我是老大应助称心妙竹采纳,获得10
5秒前
所所应助怕孤单的平卉采纳,获得10
5秒前
科研通AI2S应助MaNing采纳,获得30
5秒前
哈哈发布了新的文献求助10
5秒前
大个应助王子睿采纳,获得10
5秒前
勤恳风华完成签到,获得积分10
5秒前
5秒前
nh3发布了新的文献求助10
6秒前
6秒前
6秒前
归尘发布了新的文献求助10
6秒前
等风的人发布了新的文献求助10
6秒前
王思甜完成签到,获得积分20
7秒前
7秒前
7秒前
斌糖排骨完成签到,获得积分10
8秒前
如意语柔发布了新的文献求助10
8秒前
华仔应助点点采纳,获得10
8秒前
小柒完成签到,获得积分10
8秒前
8秒前
怡然缘分发布了新的文献求助10
9秒前
科研通AI5应助Qionglin采纳,获得10
9秒前
zhao发布了新的文献求助10
9秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206341
求助须知:如何正确求助?哪些是违规求助? 4384805
关于积分的说明 13654605
捐赠科研通 4243073
什么是DOI,文献DOI怎么找? 2327875
邀请新用户注册赠送积分活动 1325614
关于科研通互助平台的介绍 1277710