Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning

拖延 计算机科学 强化学习 作业车间调度 调度(生产过程) 工作车间 集合(抽象数据类型) 数学优化 流水车间调度 地铁列车时刻表 人工智能 数学 操作系统 程序设计语言
作者
Shu Luo,Linxuan Zhang,Yushun Fan
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:159: 107489-107489 被引量:152
标识
DOI:10.1016/j.cie.2021.107489
摘要

In modern volatile and complex manufacturing environment, dynamic events such as new job insertions and machine breakdowns may randomly occur at any time and different objectives in conflict with each other should be optimized simultaneously, leading to an urgent requirement of real-time multi-objective rescheduling methods that can achieve both time efficiency and solution quality. In this regard, this paper proposes an on-line rescheduling framework named as two-hierarchy deep Q network (THDQN) for the dynamic multi-objective flexible job shop scheduling problem (DMOFJSP) with new job insertions. Two practical objectives including total weighted tardiness and average machine utilization rate are optimized. The THDQN model contains two deep Q network (DQN) based agents. The higher-level DQN is a controller determining the temporary optimization goal for the lower DQN. At each rescheduling point, it takes the current state features as input and chooses a feasible goal to guide the behaviour of the lower DQN. Four different goals corresponding to four different forms of reward functions are suggested, each of which optimizes an indicator of tardiness or machine utilization rate. The lower-level DQN acts as an actuator. It takes the current state features together with the higher optimization goal as input and chooses a proper dispatching rule to achieve the given goal. Six composite dispatching rules are developed to select an available operation and assign it on a feasible machine, which serve as the candidate action set for the lower DQN. A novel training framework based on double DQN (DDQN) is designed. The trained THDQN is compared with each proposed composite dispatching rule, existing well-known dispatching rules as well as other reinforcement learning based scheduling methods on a wide range of test instances. Results of numerical experiments have confirmed both the effectiveness and generality of the proposed THDQN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助爱笑的傲薇采纳,获得10
刚刚
宿雨发布了新的文献求助30
1秒前
1秒前
1秒前
1秒前
2秒前
翟显治发布了新的文献求助10
2秒前
lala完成签到,获得积分20
2秒前
HeAuBook发布了新的文献求助10
2秒前
honestyh完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助麋鹿采纳,获得10
3秒前
ada发布了新的文献求助10
3秒前
3秒前
李爱国应助猫科动物采纳,获得10
4秒前
penghui发布了新的文献求助10
5秒前
5秒前
Crystal发布了新的文献求助10
6秒前
罗乔治完成签到,获得积分10
6秒前
tennisgirl完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
daodao发布了新的文献求助10
7秒前
赫若魔应助铎子采纳,获得10
7秒前
吴学仕发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助100
8秒前
思源应助谦让寄容采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
思源应助小三花妙妙采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885154
求助须知:如何正确求助?哪些是违规求助? 4170091
关于积分的说明 12940413
捐赠科研通 3930753
什么是DOI,文献DOI怎么找? 2156753
邀请新用户注册赠送积分活动 1175137
关于科研通互助平台的介绍 1079777